Microwave Network Analysis

We have shown in our study of transmission lines that circuit analysis techniques are applicable to transmission lines carrying TEM waves. These circuit analysis techniques may be applied to lines carrying TEM waves, like the coaxial line below, since a unique current and voltage can be defined at any point along the transmission line. The capability to define a unique voltage (as a line integral of the electric field) and current (as a line integral of the magnetic field) for the TEM wave is directly related to the fact that the transverse fields of the TEM wave are equivalent to the electrostatic and magnetostatic fields for the same conductor geometry. These field characteristics are also true for the general two-conductor transmission line carrying a TEM wave.

\[V = -\int_{C_1} E \cdot dl = \int_{C_1} E_{\rho} \, d\phi \]

\[I = \int_{C_2} H \cdot dl = \int_{C_2} H_{\phi} \, d\phi \]

The definitions of the current and voltage on the TEM line are independent of the integral paths chosen (the voltage integral may originate at any point on the outer conductor and terminate at any point on the inner conductor while the magnetic field integral path may take on any shape as long as the closed path encloses the inner conductor while lying within the outer conductor). These circuit analysis techniques are also applicable to wave guiding structures that employ quasi-TEM waves (microstrip) since the transverse fields are essentially the same as pure TEM waves.
For wave guiding structures that cannot support a TEM wave (non-TEM lines) like a rectangular waveguide, we cannot define a unique voltage and current at a given point along the structure. It works out that the value of the defined voltage and current will depend on the integral path chosen (there are an infinite number of possible currents and voltages). If the current and voltage are not unique, then there is also no unique impedance in the circuit analysis sense (a ratio of voltage to current). For these reasons, we choose to define equivalent voltages, currents and impedances for non-TEM lines which, even though they are not unique, yield the proper physical behavior of the guided wave (power flow, attenuation, etc.). The following are the rules that we use in the definition of these equivalent parameters for non-TEM lines.

1. Equivalent voltages, currents and impedances are defined for each non-TEM mode.
2. The equivalent voltage is defined to be proportional to the transverse electric field.
3. The equivalent current is defined to be proportional to the transverse magnetic field.
4. The product of the equivalent voltage and current yields the power flow of the mode at that point on the non-TEM line.
5. The ratio of the equivalent voltage to the equivalent current defines an equivalent characteristic impedance for the non-TEM line. The choice of the equivalent characteristic impedance is arbitrary, but is normally chosen as either the wave impedance of the given mode, or normalized to unity.

Using these guidelines, we may define the transverse fields of an arbitrary non-TEM mode on a general wave guiding structure as

\[
E_1(x,y,z) = e(x,y)(A^+ e^{-j\beta z} + A^- e^{j\beta z}) = \frac{e(x,y)}{C_1} \left(V^+ e^{-j\beta z} + V^- e^{j\beta z} \right)
\]

\[= \frac{e(x,y)}{C_1} V(z)\]
\[H_I(x,y,z) = h(x,y)(A^+ e^{-j\beta z} - A^- e^{j\beta z}) = \frac{h(x,y)}{C_2} (I^+ e^{-j\beta z} - I^- e^{j\beta z}) \]

\[= \frac{h(x,y)}{C_2} I(z) \]

where \(e(x,y) \) and \(h(x,y) \) are vectors defining the transverse variation of the transverse fields, and the constants \(A^+ \) and \(A^- \) are the field amplitudes of the forward and reverse traveling waves, respectively. Note that the wave coefficients and the current and voltage constants are related by

\[C_1 = \frac{V^+}{A^+} = \frac{V^-}{A^-} \]
\[C_2 = \frac{I^+}{A^+} = \frac{I^-}{A^-} \]

The transverse vectors \(e(x,y) \) and \(h(x,y) \) are related by the particular wave impedance of the given mode. We have shown for general TE and TM modes on a wave guiding structure that

\[Z_{TE} = \frac{E_x}{H_y} = -\frac{E_y}{H_x} = \frac{k\eta}{\beta} \]
\[Z_{TM} = \frac{E_x}{H_y} = -\frac{E_y}{H_x} = \frac{\beta\eta}{k} \]

so that the transverse vectors \(e(x,y) \) and \(h(x,y) \) are related by

\[h(x,y) = \frac{a_x \times e(x,y)}{Z_w} \]

where \(Z_w \) is the wave impedance (either \(Z_{TM} \) or \(Z_{TE} \)). If we define the equivalent characteristic impedance for the given mode of the waveguide
as the wave impedance of the mode, then

\[
Z_o = \frac{V^+}{I^+} = \frac{V^-}{I^-} = \frac{C_1}{C_2} = Z_w
\] \tag{1a}

Alternatively, we may normalize the equations and choose

\[
\frac{C_1}{C_2} = 1
\] \tag{1b}

A second equation for the unknown constants \(C_1 \) and \(C_2 \) may be found by enforcing the power flow condition. The complex power flow in the \(+z\) direction along the waveguide may be defined using the corresponding Poynting vector.

\[
S^+ = \frac{1}{2} [E_i(x,y,z) \times H_i^*(x,y,z)]
\]

\[
= \frac{1}{2} \left\{ \left[A^+ e(x,y) e^{-j\beta z} \right] \times \left[A^{++} \mathbf{h}^*(x,y) e^{j\beta z} \right] \right\}
\]

\[
= \frac{1}{2} \left\{ \left[\frac{V^+}{C_1} e(x,y) e^{-j\beta z} \right] \times \left[\frac{I^{++}}{C_2} \mathbf{h}^*(x,y) e^{j\beta z} \right] \right\}
\]

\[
= \frac{V^+ I^{++}}{2 C_1 C_2^*} e(x,y) \times \mathbf{h}^*(x,y)
\]

The power flow in the \(+z\) direction is found by integrating the Poynting vector over the cross-section of the waveguide \((S)\).

\[
P^+ = \frac{V^+ I^{++}}{2 C_1 C_2^*} \int \int_S [e(x,y) \times \mathbf{h}^*(x,y)] \cdot a_z \, ds
\]

According to circuit theory, the power flow in the equivalent circuit should be
\[P^* = \frac{1}{2} V^* I^{**} \]

so that

\[C_1 C_2^* = \int \int_s [e(x, y) \times h^*(x, y)] \cdot a_z \, ds \quad (2) \]

We may solve equations (1) and (2) simultaneously to determine the coefficients \(C_1 \) and \(C_2 \). This process is repeated for each of the modes within the waveguide to yield the general expression for the total transverse fields in terms of the equivalent voltages and currents.

\[
E_i(x, y, z) = \sum_{n=1}^{N} \left[\frac{V_n^+}{C_{1n}} e^{-j\beta_n z} + \frac{V_n^-}{C_{1n}} e^{j\beta_n z} \right] e_n(x, y)
\]

\[
H_i(x, y, z) = \sum_{n=1}^{N} \left[\frac{I_n^+}{C_{2n}} e^{-j\beta_n z} - \frac{I_n^-}{C_{2n}} e^{j\beta_n z} \right] h_n(x, y)
\]
Example (Waveguide equivalent voltage and current)

Consider the fields and wave impedance associated with the dominant TE_{10} mode in a rectangular waveguide.

\[
E_x(x, y, z) = 0
\]

\[
E_y(x, y, z) = -\frac{j\omega \mu \pi}{k_{c_{10}}^2 a} A_{10} \sin \frac{\pi x}{a} e^{-j\beta_{10} z}
\]

\[
H_x(x, y, z) = \frac{j\beta_{10} \pi}{k_{c_{10}}^2 a} A_{10} \sin \frac{\pi x}{a} e^{-j\beta_{10} z}
\]

\[
H_y(x, y, z) = 0
\]

\[
H_z(x, y, z) = A_{10} \cos \frac{\pi x}{a} e^{-j\beta_{10} z}
\]

\[
Z_{\text{TE}_{10}} = \frac{k \eta}{\beta_{10}}
\]

\[
\beta_{10} = \sqrt{k^2 - \left(\frac{\pi}{a}\right)^2}
\]

\[
k_{c_{10}} = \frac{\pi}{a}
\]

Note that these solutions contain only a forward traveling wave. If we include waves traveling in both directions, we may write the transverse fields within the waveguide as

\[
E_y(x, y, z) = (A^+ e^{-j\beta_{10} z} + A^- e^{j\beta_{10} z}) \sin \frac{\pi x}{a}
\]

\[
= (A^+ e^{-j\beta_{10} z} + A^- e^{j\beta_{10} z}) e(x, y)
\]
where the transverse variation of the TE\textsubscript{10} mode transverse fields are defined by the functions:

\[e(x,y) = \sin \frac{\pi x}{a} \]

\[h(x,y) = -\frac{1}{Z_{TE10}} \sin \frac{\pi x}{a} \]

There are currents and voltages associated with the rectangular waveguide TE\textsubscript{10} mode which are defined by

\[V(z) = V^+ e^{-j\beta_{10} z} + V^- e^{j\beta_{10} z} \]

\[I(z) = I^+ e^{-j\beta_{10} z} - I^- e^{j\beta_{10} z} = \frac{1}{Z_o} (V^+ e^{-j\beta_{10} z} - V^- e^{j\beta_{10} z}) \]

The voltage coefficients (\(V^+ \) and \(V^- \)) and current coefficients (\(I^+ \) and \(I^- \)) are related to the field coefficients \(A^+ \) and \(A^- \) by

\[V^+ = C_1 A^+ \quad I^+ = C_2 A^+ \]

\[V^- = C_1 A^- \quad I^- = C_2 A^- \]

where the constants \(C_1 \) and \(C_2 \) are given by

\[\frac{C_1}{C_2} = Z_o \]
\[C_1 C_2^* = \iint_S [e(x,y) \times h^*(x,y)] \cdot a_z \, ds \]

where the surface \(S \) is the cross-sectional surface of the waveguide. If we choose the equivalent characteristic impedance of the waveguide to be the waveguide TE_{10} wave impedance, then

\[Z_o = Z_{TE_{10}} \]

\[\frac{C_1}{C_2} = \frac{Z_{TE_{10}}}{\beta_{10}} \tag{1} \]

Evaluation of the integral in the second equation for the unknown constants yields

\[C_1 C_2^* = \int_0^a \int_0^b \left[e(x,y) a_y \times h^*(x,y) a_x \right] \cdot a_z \, dx \, dy \]

\[= \int_0^a \int_0^b \left[\left(\frac{\sin \frac{\pi x}{a}}{a} \right) \times \left(-\frac{1}{Z_{TE_{10}}} \sin \frac{\pi x}{a} \right) \right] \cdot a_z \, dx \, dy \]

\[= \frac{1}{Z_{TE_{10}}} \int_0^a \int_0^b \left(\sin^2 \frac{\pi x}{a} \right) \, dx \, dy \]

\[= \frac{b}{Z_{TE_{10}}} \left(\frac{x}{2} - \frac{a}{4\pi} \sin \frac{2\pi x}{a} \right)_0^a \]

\[= \frac{1}{Z_{TE_{10}}} \frac{ab}{2} \tag{2} \]

Solving equations (1) and (2) for \(C_1 \) and \(C_2 \) yields
The equivalent waveguide current and voltage for the TE_{10} mode become

\[C_1 = \sqrt{\frac{ab}{2}} \]

\[C_2 = \frac{1}{Z_{TE_{10}}} \sqrt{\frac{ab}{2}} \]

\[V(z) = \sqrt{\frac{ab}{2}} (A^+ e^{-j\beta_{10}z} + A^- e^{j\beta_{10}z}) \]

\[I(z) = \frac{1}{Z_{TE_{10}}} \sqrt{\frac{ab}{2}} (A^+ e^{-j\beta_{10}z} - A^- e^{j\beta_{10}z}) \]

Note that the equations above represent an equivalent transmission line model for the waveguide.
Example (Waveguide discontinuity, equivalent transmission line model)

Consider a rectangular waveguide which is air-filled over a portion of the waveguide \((z < 0)\) and dielectric-filled over the remaining portion of the waveguide \((z > 0)\). Assume the dominant \(TE_{10}\) mode is propagating in the air-filled portion of the waveguide. Determine the fields in both portions of the waveguide using the transmission line equivalent model.

Waveguide

![Waveguide Diagram]

Transmission line equivalent model

![Transmission Line Diagram]

We may employ the equivalent voltage and current equations for the rectangular waveguide \(TE_{10}\) mode and model the waveguide discontinuity as a connection of two transmission lines with different characteristic impedances.
Given the incident TE\textsubscript{10} mode in the air-filled portion of the waveguide, part of the wave is transmitted into the dielectric-filled portion of the waveguide while the remainder of the wave is reflected back into the air-filled region. The equivalent voltage in the two regions of the waveguide may be written as

\[V_a(z) = \sqrt{\frac{ab}{2}} (A^+_a e^{-j\beta_a z} + A^-_a e^{j\beta_a z}) \]

\[V_d(z) = \sqrt{\frac{ab}{2}} (A^+_d e^{-j\beta_d z} + A^-_d e^{j\beta_d z}) \]

According to the equivalent transmission line model, the ratio of the reverse traveling wave voltage coefficient to that of the forward wave is equal to the reflection coefficient of the transmission line connection.

\[\frac{A^-_a}{A^+_a} = \Gamma = \frac{Z_{od} - Z_{oa}}{Z_{od} + Z_{oa}} \]

\[V_a(z) = \sqrt{\frac{ab}{2}} A^+_a (e^{-j\beta_a z} + \Gamma e^{j\beta_a z}) \]

where

\[Z_{oa} = \frac{k_o \eta_o}{\beta_a} = \frac{\omega \mu_o}{\beta_a} \]

\[Z_{od} = \frac{k_d \eta_d}{\beta_d} = \frac{\omega \mu_o}{\beta_d} \]

\[\beta_a = \sqrt{k_o^2 - \left(\frac{\pi}{a}\right)^2} \]

\[\beta_d = \sqrt{k_d^2 - \left(\frac{\pi}{a}\right)^2} \]
There is no reverse traveling wave in the dielectric-filled region and the ratio of the forward wave voltage coefficient in the dielectric region to the forward wave voltage coefficient in the air region is equal to the transmission coefficient for the transmission line connection.

\[A_d^- = 0 \quad \frac{A_d^+}{A_a^+} = T = 1 + \Gamma = \frac{2Z_{od}}{Z_{od} + Z_{oa}} \]

\[V_d(z) = \sqrt{\frac{ab}{2}} A_a^+ T e^{-\frac{\beta_d}{2}z} \]

The corresponding transverse fields within the two regions of the waveguide are determined according to

\[E_{ta}(x,y,z) = \frac{e(x,y)}{C_1} V_d(z) \]

\[H_{ta}(x,y,z) = \frac{h(x,y)}{C_2} I_d(z) \]

\[E_{td}(x,y,z) = \frac{e(x,y)}{C_1} V_d(z) \]

\[H_{td}(x,y,z) = \frac{h(x,y)}{C_2} I_d(z) \]
Microwave One-Port Network

A general microwave one-port network is defined by a device for which power can enter or leave through only one transmission line or waveguide. We assume that the one-port network is defined by a surface S which is perfectly conducting except for an opening at the terminal connection.

We may apply the general form of Poynting’s theorem to describe the power flow for the one-port network. The general form of Poynting’s theorem for the closed surface S shown below is

$$P_s = P_o + P_i + j2\omega(W_m - W_e)$$

P_s - power delivered by the sources within S.
P_o - power passing outward through S.
P_i - power dissipated within S.
W_m - magnetic energy stored within S.
W_e - electric energy stored within S.
For the one-port network, we assume that no sources are located within the surface S ($P_s = 0$). The unit normal n is an inward pointing normal for the one-port network such that the term P_o is negative and represents the power flow into the one-port network. Poynting’s theorem for the one-port network becomes

$$P_o = P_i + j2\omega(W_m - W_e)$$

We may define the transverse fields over the wave guiding structure as

$$E_t(x, y, z) = \frac{e(x, y)}{C_1}(V^+ e^{-j\beta z} + V^- e^{j\beta z}) = \frac{e(x, y)}{C_1}V(z)$$

$$H_t(x, y, z) = \frac{h(x, y)}{C_2}(I^+ e^{-j\beta z} - I^- e^{j\beta z}) = \frac{h(x, y)}{C_2}I(z)$$

Note that the terminal voltage V and current I at the input to the one-port network is

$$V = V(0) = V^+ + V^-$$
$$I = I(0) = I^+ - I^-$$

The power flow into the one-port network is then given by the surface integral of the transverse fields in the terminal plane (opening).

$$P_o = \frac{1}{2} \int_{S} [E_t(x, y, 0) \times H_t^*(x, y, 0)] \cdot a_z \, ds$$

$$= \frac{VI^*}{2C_1C_2^*} \int_{S} [e(x, y) \times h^*(x, y)] \cdot a_z \, ds$$

$$= \frac{1}{2} VI^* = P_i + j2\omega(W_m - W_e)$$

Note that the equation above is a restatement of the previously obtained power flow relationship for the general wave guiding structure:
The power flow can be related to the input impedance of the one-port network which according to circuit theory is

\[Z_{in} = \frac{V}{I} = R + jX \]

Since the voltage and current that we are using in this impedance relationship may be the equivalent voltage and current of a waveguide, the resulting input impedance would be an equivalent impedance. The power flow equation can be rewritten as

\[P_o = \left(\frac{1}{2} V I^* \right) \left(\frac{I}{I} \right) = \left(\frac{1}{2} \frac{V}{I} \right) |I|^2 = \frac{1}{2} Z_{in} |I|^2 = P_l + j2\omega (W_m - W_e) \]

so that the input impedance of the one-port network is

\[Z_{in} = R + jX = \frac{P_l + j2\omega (W_m - W_e)}{\frac{1}{2} |I|^2} \]

\[R = \frac{2P_l}{|I|^2} \]

\[X = \frac{4\omega (W_m - W_e)}{|I|^2} \]

These equations show that the resistance of the one-port is related to the power dissipated within \(S \) while the reactance of the one-port is related to the net reactive energy stored within in \(S \). If the one-port is characterized by lossless materials, then \(P_l = 0 \) and \(R = 0 \). The reactance of the one-port is inductive (positive) if \(W_m > W_e \) or capacitive (negative) if \(W_e > W_m \).
Symmetry of the Microwave Network Input Impedance and Reflection Coefficient

We know from circuit theory that the resistive and reactive components of impedance have certain symmetry characteristics with respect to frequency. Since circuit theory is simply a low-frequency approximation of field theory, we find that these impedance symmetry relationships hold true for microwave network input impedances. If we define the standard Fourier transform pair for the time-domain voltage $v(t)$ and the corresponding frequency-domain voltage $V(\omega)$, we have

$$v(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(\omega) e^{j\omega t} d\omega$$

$$V(\omega) = \int_{-\infty}^{\infty} v(t) e^{-j\omega t} dt$$

The time-domain voltage must be real such that $v(t) = v^*(t)$ which gives

$$v(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(\omega) e^{j\omega t} d\omega = v^*(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V^*(\omega) e^{-j\omega t} d\omega$$

If we make the change of variable from ω to $-\omega$ in the integral for $v^*(t)$, we find

$$v(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V(\omega) e^{j\omega t} d\omega = v^*(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} V^*(-\omega) e^{j\omega t} d\omega$$

so that the frequency-domain voltage must satisfy

$$V(\omega) = V^*(-\omega) \quad \text{or} \quad V^*(\omega) = V(-\omega)$$

which means that Re\{\(V(\omega)\)\} must be even with respect to ω while Im\{\(V(\omega)\)\} must be odd with respect to ω.
The impedance can be written as

\[Z_\text{m}(\omega) = R(\omega) + jX(\omega) \]

\[= \frac{V(\omega)}{I(\omega)} = \frac{V(\omega)I^*(\omega)}{I(\omega)I^*(\omega)} = \frac{V(\omega)I^*(\omega)}{|I(\omega)|^2} \]

\[= \frac{[\text{Re}\{V(\omega)\} + j\text{Im}\{V(\omega)\}][\text{Re}\{I(\omega)\} - j\text{Im}\{I(\omega)\}]}{|I(\omega)|^2} \]

\[= \frac{[\text{Re}\{V(\omega)\}\text{Re}\{I(\omega)\} + \text{Im}\{V(\omega)\}\text{Im}\{I(\omega)\}]}{|I(\omega)|^2} \]

\[+ j \frac{[\text{Im}\{V(\omega)\}\text{Re}\{I(\omega)\} - \text{Re}\{V(\omega)\}\text{Im}\{I(\omega)\}]}{|I(\omega)|^2} \]

The real term above \([R(\omega)]\) must be even since it is defined in terms of products of even functions and products of odd functions. The imaginary term \([X(\omega)]\) must be odd since it is defined in terms of products of even functions and odd functions. Thus,

\[R(\omega) \rightarrow \text{even with respect to } \omega \]

\[X(\omega) \rightarrow \text{odd with respect to } \omega \]

The real and imaginary portions of the reflection coefficient at the input of the one-port network also exhibit symmetry with respect to \(\omega\). The reflection coefficient as a function of frequency is defined by

\[\Gamma(\omega) = \frac{Z(\omega) - Z_o}{Z(\omega) + Z_o} = \frac{R(\omega) - Z_o + jX(\omega)}{R(\omega) + Z_o + jX(\omega)} \]

Evaluating this expression at \(-\omega\) yields
\[\Gamma(-\omega) = \frac{Z(-\omega) - Z_o}{Z(-\omega) + Z_o} = \frac{R(\omega) - Z_o - jX(\omega)}{R(\omega) + Z_o - jX(\omega)} = \Gamma^*(\omega) \]

which shows that

\[\text{Re}\{\Gamma(\omega)\} \rightarrow \text{even with respect to } \omega \]

\[\text{Im}\{\Gamma(\omega)\} \rightarrow \text{odd with respect to } \omega \]
The general N-port microwave network is shown below where N is the total number of ports. The ports may be fed by any combination of transmission lines or waveguides. We assume that each waveguiding structure carries only the single dominant mode. A terminal plane (transverse plane) is defined for each port where the equivalent voltage and current will be defined. The terminal plane is designated as t_n for the n^{th} port. Discontinuities in the guiding structure will generally generate evanescent modes. If we choose the terminal planes far enough away from these discontinuities, then the evanescent modes decay sufficiently to be neglected.

If the coordinates of the wave guiding structures are chosen such that the terminal planes are each located at $z = 0$, then the voltage and current at the n^{th} terminal plane may be written as
\[V_n = V^+ + V^- \]
\[I_n = I^+ - I^- \]

Note that the reverse wave traveling out of the \(n^{th}\) port is dependent on the reflection from the \(n^{th}\) port and waves that are coupled into the \(n^{th}\) port from the other ports. Thus, the impedance of the overall N-port network must be defined by an impedance matrix \([Z]\) such that

\[[V] = [Z][I] \]

or

\[
\begin{bmatrix}
V_1 \\
V_2 \\
V_3 \\
\vdots \\
V_N
\end{bmatrix} =
\begin{bmatrix}
Z_{11} & Z_{12} & Z_{13} & \cdots & Z_{1N} \\
Z_{21} & Z_{22} & Z_{23} & \cdots & Z_{2N} \\
Z_{31} & Z_{32} & Z_{33} & \cdots & Z_{3N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
Z_{N1} & Z_{N2} & Z_{N3} & \cdots & Z_{NN}
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
I_3 \\
\vdots \\
I_N
\end{bmatrix}
\]

The individual elements of the impedance matrix may be determined according to

\[Z_{ij} = \frac{V_i}{I_j} \text{ with } I_k = 0 \text{ for } k \neq j \]

In other words, we may drive port \(j\) with a current \(I_j\) while open-circuiting all other ports except \(j\) and measure the resulting open-circuit response at port \(i\). The ratio of the open-circuit voltage at port \(i\) to the current at port \(j\) gives us the impedance matrix element \(Z_{ij}\).
We may also define an admittance matrix according to

\[
[I] = [Y][V]
\]

or

\[
\begin{bmatrix}
I_1 \\
I_2 \\
I_3 \\
\vdots \\
I_N
\end{bmatrix} = \begin{bmatrix}
Y_{11} & Y_{12} & Y_{13} & \cdots & Y_{1N} \\
Y_{21} & Y_{22} & Y_{23} & \cdots & Y_{2N} \\
Y_{31} & Y_{32} & Y_{33} & \cdots & Y_{3N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
Y_{N1} & Y_{N2} & Y_{N3} & \cdots & Y_{NN}
\end{bmatrix} \begin{bmatrix}
V_1 \\
V_2 \\
V_3 \\
\vdots \\
V_N
\end{bmatrix}
\]

The individual elements of the admittance matrix may be determined according to

\[
Y_{ij} = \frac{I_i}{V_j} \quad \text{with} \quad V_k = 0 \quad \text{for} \quad k \neq j
\]

Thus, we may drive port \(j \) with a voltage \(V_j \) while short-circuiting all other ports except \(j \) and measure the resulting short-circuit current response at port \(i \). The ratio of the short-circuit current at port \(i \) to the voltage at port \(j \) gives us the admittance matrix element \(Y_{ij} \).

According to the definition of the impedance and admittance matrices, these matrices are inverses so that

\[
[Y] = [Z]^{-1}
\]

If the N-port microwave network is passive (no sources) and contains only isotropic media, the network is a reciprocal network and both the impedance and admittance matrices are symmetric. Examples of anisotropic materials (parameters are functions of direction - tensor \(\mu \) and/or \(\varepsilon \)) are ferrites and plasmas. If the network is lossless, then the impedance and admittance matrices are purely imaginary.
Scattering Matrix

The equivalent currents and voltages used to define the impedance and admittance matrices for the general N-port network are somewhat abstract in that they cannot be easily measured for a given network at microwave frequencies. However, we may easily measure the amplitude and phase angle of the wave reflected (or scattered) from a port relative to the amplitude and phase angle of the wave incident on that port. Thus, we define a scattering matrix which relates the scattered voltage coefficients \((V^-) \) to the incident wave voltage coefficients \((V^+) \) according to

\[
[V^-] = [S][V^+]
\]

or

\[
\begin{bmatrix}
V_1^- \\
V_2^- \\
V_3^- \\
\vdots \\
V_N^-
\end{bmatrix} =
\begin{bmatrix}
S_{11} & S_{12} & S_{13} & \cdots & S_{1N} \\
S_{21} & S_{22} & S_{23} & \cdots & S_{2N} \\
S_{31} & S_{32} & S_{33} & \cdots & S_{3N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
S_{N1} & S_{N2} & S_{N3} & \cdots & S_{NN}
\end{bmatrix}
\begin{bmatrix}
V_1^+ \\
V_2^+ \\
V_3^+ \\
\vdots \\
V_N^+
\end{bmatrix}
\]

The individual elements of the scattering matrix may be determined according to

\[
S_{ij} = \frac{V_i^-}{V_j^+} \quad \text{with} \quad V_k^+ = 0 \quad \text{for} \quad k \neq j
\]

Thus, we may launch an incident wave toward port \(j \) while all other ports have no incident waves (the transmission lines or waveguides on these ports should be terminated by a matched load) and measure the scattered wave at port \(i \). The ratio of the scattered wave at port \(i \) to the incident wave at port \(j \) gives us the scattering matrix element \(S_{ij} \). The elements of the scattering matrix are referred to as the \(s \)-parameters of the network.
Example (Determination of s-parameters)

Determine the s-parameters for the 2-port network characterized by the series connection of transmission lines and a lumped reactance shown below.

\[\begin{align*}
\text{Port} \#1 & \quad \text{Port} \#2 \\
V_1^+ & \quad jX & \quad V_2^+ \\
V_1^- & \quad Z_1 & \quad V_2^- \\
I_1 & \quad + & \quad + \\
I_2 & \quad + & \quad + \\
\end{align*} \]

Note that the matched termination eliminates any "incident" wave on port \#2 (\(V_2^+ = 0\)).

\[S_{11} = \frac{V_1^-}{V_1^+} \bigg|_{V_2^* = 0} = \Gamma_1 = \frac{Z_{m1} - Z_1}{Z_{m1} + Z_1} = \frac{(Z_2 + jX) - Z_1}{(Z_2 + jX) + Z_1} = \frac{Z_2 - Z_1 + jX}{Z_1 + Z_2 + jX} \]
For the series reactance connection, we may relate the two port currents by

\[I_1 = -I_2 \]

If we assume that both ports are located at a coordinate reference of \(z = 0 \) for each transmission line, then the current relation can be written as

\[I_1 = \frac{1}{Z_1} \left[V_{1}^{+} - V_{1}^{-} \right] = -I_2 = -\frac{1}{Z_2} \left[-V_{2}^{-} \right] \]

\[\frac{V_{1}^{+}}{Z_1} \left[1 - \frac{V_{1}^{-}}{V_{1}^{+}} \right] = \frac{V_{1}^{+}}{Z_1} \left[1 - S_{11} \right] = \frac{V_{2}^{-}}{Z_2} \]

\[S_{21} = \frac{V_{2}^{-}}{V_{1}^{+}} = \frac{Z_2}{Z_1} \left[1 - S_{11} \right] \]

\[= \frac{Z_2}{Z_1} \left[1 - \frac{Z_2 - Z_1 + jX}{Z_1 + Z_2 + jX} \right] \]

\[= \frac{Z_2}{Z_1} \left[\frac{2Z_1}{Z_1 + Z_2 + jX} \right] \]

\[= \frac{2Z_2}{Z_1 + Z_2 + jX} \]
Determination of S_{22}, S_{12} (excite port #2, matched termination on port #1)

The matched termination eliminates any “incident” wave on port #1 ($V_{1^+} = 0$).

$$S_{22} = \left. \frac{V_{2^-}}{V_{2^+}} \right|_{V_1^+ = 0} = \Gamma_2 \left. \frac{Z_{tn,2} - Z_2}{Z_{tn,2} + Z_2} = \frac{(Z_1 + jX) - Z_2}{(Z_1 + jX) + Z_2} \right. $$

$$S_{12} = \left. \frac{V_1^-}{V_2^+} \right|_{V_1^+ = 0}$$

Again, we may relate the two port currents and find

$$I_1 = \frac{1}{Z_1} \left[-V_1^- \right] = -I_2 = -\frac{1}{Z_2} \left[V_2^+ - V_2^- \right]$$

$$\frac{V_1^-}{Z_1} = \frac{V_2^+}{Z_2} \left[1 - \frac{V_2^-}{V_2^+} \right] = \frac{V_2^+}{Z_2} \left[1 - S_{22} \right]$$
The overall scattering matrix for the two-port network is

\[
S_{12} = \frac{V_1^-}{V_2^+} = \frac{Z_1}{Z_2} \left[1 - S_{22} \right] \\
= \frac{Z_1}{Z_2} \left[1 - \frac{Z_1 - Z_2 + jX}{Z_1 + Z_2 + jX} \right] \\
= \frac{Z_1}{Z_2} \left[\frac{2Z_2}{Z_1 + Z_2 + jX} \right] \\
= \frac{2Z_1}{Z_1 + Z_2 + jX}
\]

The overall scattering matrix for the two-port network is

\[
[S] = \begin{bmatrix}
\frac{Z_2 - Z_1 + jX}{Z_1 + Z_2 + jX} & \frac{2Z_1}{Z_1 + Z_2 + jX} \\
\frac{2Z_2}{Z_1 + Z_2 + jX} & \frac{Z_1 - Z_2 + jX}{Z_1 + Z_2 + jX}
\end{bmatrix}
\]
Properties of the Scattering Matrix

If we normalize all ports of the N-port microwave network to the same characteristic impedance, then

For a reciprocal network \(\Rightarrow \) \([S]\) is symmetric

For a lossless network \(\Rightarrow \) \([S]\) is unitary

The matrix \([S]\) is unitary if it satisfies

\[
[S]^\dagger [S]^* = [U]
\]

where

\[
[S]^\dagger = \text{the transpose of } [S]
\]

\[
[S]^* = \text{the conjugate of } [S]
\]

\([U] = \text{identity matrix}

For a unitary matrix \([S]\), the product of any column of \([S]\) with the conjugate of that column gives unity. The product of any column of \([S]\) with the conjugate of any other column gives zero.
Scattering Matrix in Terms of the Impedance Matrix

If we assume that the characteristic impedances of all N-ports are identical and choose this characteristic impedance to be unity (\(Z_{on} = 1\)), then

\[
V_n = V_n^+ + V_n^- \quad \Rightarrow \quad [V] = [V^+] + [V^-]
\]

\[
I_n = V_n^+ - V_n^- \quad \Rightarrow \quad [I] = [V^+] - [V^-]
\]

When these equations for the voltage and current vectors are incorporated into the impedance matrix definition, we find

\[
[V] = [Z][I]
\]

\[
[V^+] + [V^-] = [Z][V^+] - [Z][V^-]
\]

Grouping the terms involving the forward voltage coefficients and reverse voltage coefficients yields,

\[
([Z] + [U])[V^-] = ([Z] - [U])[V^+]
\]

\[
[V^-] = ([Z] + [U])^{-1}([Z] - [U])[V^+]
\]

According to the definition of the scattering matrix,

\[
[V^-] = [S][V^+]
\]

so that the scattering matrix in terms of the impedance matrix is

\[
[S] = ([Z] + [U])^{-1}([Z] - [U])
\]

We can also solve this equation for the impedance matrix in terms of the scattering matrix which yields

\[
[Z] = ([U] - [S])^{-1}([U] + [S])
\]
S-Parameters at Arbitrary Terminal Planes

We have assumed that all terminal planes for the wave guiding structures connected to the N-port microwave network are located at $z = 0$. If we wish to shift the terminal planes to some arbitrary locations at distances l_n away from the $z = 0$ reference, a new scattering matrix must be determined. Note that the terminal planes have been moved away from the N-port network. Shifting the planes closer to the N-port would require the opposite sign on the z-coordinates.

The incident and scattered voltage waves at the original and shifted terminal planes for the N ports are related by different scattering matrices. If we denote all quantities at the shifted terminal planes with a prime, then we may write
According to the general equations for the equivalent voltage as a function of position on a wave guiding structure, the voltage on the \(n^{th} \) port is given by

\[
V_n(z) = V_n^+ e^{-j\beta_n z} + V_n^- e^{j\beta_n z}
\]

Thus, the coefficients of the incident and scattered voltage waves at the original terminal planes (unprimed terms) and the shifted terminal planes (primed terms) are related by

\[
V_n^{\prime +} = V_n^+ e^{j\theta_n} = V_n^+ e^{j\theta_n} \quad \rightarrow \quad V_n^+ = e^{-j\theta_n} V_n^{\prime +},
\]

\[
V_n^{\prime -} = V_n^- e^{-j\theta_n} = V_n^- e^{-j\theta_n} \quad \rightarrow \quad V_n^- = e^{j\theta_n} V_n^{\prime -},
\]

In matrix form, the coefficients of the incident and scattered voltage waves are related by

\[
\begin{bmatrix}
V_1^+ \\
V_2^+ \\
V_3^+ \\
\vdots \\
V_N^+
\end{bmatrix} =
\begin{bmatrix}
e^{-j\theta_1} & 0 & 0 & \cdots & 0 \\
0 & e^{-j\theta_2} & 0 & \cdots & 0 \\
0 & 0 & e^{-j\theta_3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & e^{-j\theta_N}
\end{bmatrix}
\begin{bmatrix}
V_1^{\prime +} \\
V_2^{\prime +} \\
V_3^{\prime +} \\
\vdots \\
V_N^{\prime +}
\end{bmatrix}
\]
Inserting these incident and scattered wave vectors into the definition of the scattering matrix gives

\[
\begin{bmatrix}
V_1^- & V_2^- & V_3^- & \cdots & V_N^-
\end{bmatrix}
= \begin{bmatrix}
e^{j\theta_1} & 0 & 0 & \cdots & 0 \\
0 & e^{j\theta_2} & 0 & \cdots & 0 \\
0 & 0 & e^{j\theta_3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & e^{j\theta_N}
\end{bmatrix}
\begin{bmatrix}
V_1^- \\
V_2^- \\
V_3^- \\
\vdots \\
V_N^-
\end{bmatrix}
\]

Solving the equation above for the scattered wave coefficients gives

\[
\begin{bmatrix}
V_1^- \\
V_2^- \\
V_3^- \\
\vdots \\
V_N^-
\end{bmatrix}
= \begin{bmatrix}
e^{-j\theta_1} & 0 & 0 & \cdots & 0 \\
0 & e^{-j\theta_2} & 0 & \cdots & 0 \\
0 & 0 & e^{-j\theta_3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & e^{-j\theta_N}
\end{bmatrix}
\begin{bmatrix}
V_1^+ \\
V_2^+ \\
V_3^+ \\
\vdots \\
V_N^+
\end{bmatrix}
\]

where
The equation for the scattered wave coefficients defines the scattering matrix at the shifted terminal planes \([S']\) in terms of the scattering matrix at the original terminal planes \([S]\).

\[
\begin{bmatrix}
e^{-j\theta_1} & 0 & 0 & \cdots & 0 \\
0 & e^{-j\theta_2} & 0 & \cdots & 0 \\
0 & 0 & e^{-j\theta_3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & e^{-j\theta_N}
\end{bmatrix}^{-1} = \begin{bmatrix}
e^{j\theta_1} & 0 & 0 & \cdots & 0 \\
0 & e^{j\theta_2} & 0 & \cdots & 0 \\
0 & 0 & e^{j\theta_3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & e^{j\theta_N}
\end{bmatrix}
\]

This equation shows that there is a characteristic phase shift [defined by the electrical length associated with the physical length of the terminal plane shift, \((\theta_n = \beta_n l_n)\)] for the incident and scattered waves. That is, the incident waves reach the shifted terminal plane before the original plane, and the scattered waves reach the shifted terminal plane after the original plane.
The Transmission Matrix (ABCD Matrix)

Many microwave network problems involve series connections (cascading) of several two-port networks. For this type of network, it is convenient to define a special set of two-port parameters known as the transmission parameters. The transmission parameters (defined by A, B, C and D) make up the transmission matrix which is also called the ABCD matrix. The transmission matrix of a network formed by several cascaded two-ports is simply the product of the transmission matrices of the individual two-ports.

The transmission matrix of a given two-port network relates the input voltage and current to the output voltage and current according to

\[
\begin{align*}
V_1 &= AV_2 + BI_2 \\
I_1 &= CV_2 + DI_2
\end{align*}
\]

Note that the convention for the direction of the output current \(I_2\) has been changed from our previous convention. This change in the current direction allows one to equate the output current of one stage to the input current of the following stage. In matrix form, the transmission equations are

\[
\begin{bmatrix}
V_1 \\
I_1
\end{bmatrix} =
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\begin{bmatrix}
V_2 \\
I_2
\end{bmatrix}
\]

where

\[
A = \left. \frac{V_1}{V_2} \right|_{I_2 = 0} \quad \text{(open circuit voltage ratio)}
\]
Given a pair of cascaded two-port networks as shown below, the transmission matrices for the network #1 and network #2 can be defined as

\[
B = \frac{V_1}{I_2} \bigg|_{v_2 = 0} \quad \text{(short circuit transfer impedance)}
\]

\[
C = \frac{I_1}{V_2} \bigg|_{I_2 = 0} \quad \text{(open circuit transfer admittance)}
\]

\[
D = \frac{I_1}{I_2} \bigg|_{v_2 = 0} \quad \text{(short circuit current ratio)}
\]

Given a pair of cascaded two-port networks as shown below, the transmission matrices for the network #1 and network #2 can be defined as

\[
\begin{bmatrix}
V_1 \\
I_1
\end{bmatrix} = \begin{bmatrix}
A_1 & B_1 \\
C_1 & D_1
\end{bmatrix} \begin{bmatrix}
V_2 \\
I_2
\end{bmatrix} \quad \begin{bmatrix}
V_2 \\
I_2
\end{bmatrix} = \begin{bmatrix}
A_2 & B_2 \\
C_2 & D_2
\end{bmatrix} \begin{bmatrix}
V_3 \\
I_3
\end{bmatrix}
\]

Simple substitution yields

\[
\begin{bmatrix}
V_1 \\
I_1
\end{bmatrix} = \begin{bmatrix}
A_1 & B_1 \\
C_1 & D_1
\end{bmatrix} \begin{bmatrix}
A_2 & B_2 \\
C_2 & D_2
\end{bmatrix} \begin{bmatrix}
V_3 \\
I_3
\end{bmatrix}
\]

which defines the input quantities of the overall network to the output quantities. This technique is easily extended to the series connection of an arbitrary number of two-port networks.
Generalized Scattering Parameters

The incident and scattered waves in the definition of the N-port network scattering parameters may be normalized so that the power delivered to each port is independent of the characteristic impedances. Using the scattering matrix definition, the voltage and current at the terminal plane of the n^{th} port ($z = 0$) is

$$ V_n = V_n^+ + V_n^- $$

$$ I_n = \frac{1}{Z_{on}} (V_n^+ - V_n^-) $$

Assuming the characteristic impedances of the N ports are real, the power delivered to the n^{th} port is

$$ P_n = \frac{1}{2} \Re [V_n I_n^+] $$

$$ = \frac{1}{2Z_{on}} \Re \left[(V_n^+ + V_n^-)(V_n^{*+} - V_n^{-*}) \right] $$

$$ = \frac{1}{2Z_{on}} \Re \left[|V_n^+|^2 - |V_n^-|^2 + (V_n^- V_n^{*+} - V_n^+ V_n^{-*}) \right] $$

$$ = \frac{1}{2Z_{on}} \Re \left[|V_n^+|^2 - |V_n^-|^2 \right] \quad \text{(dependent on } Z_{on}) $$

If we define a new set of incident and scattered wave coefficients for port N (a_n and b_n) according to

$$ a_n = \frac{V_n^+}{\sqrt{Z_{on}}} \quad b_n = \frac{V_n^-}{\sqrt{Z_{on}}} $$

then the voltage and current at the terminal plane of the n^{th} port are
\[V_n = V_n^+ + V_n^- = \sqrt{Z_{on}} (a_n + b_n) \]
\[I_n = \frac{1}{Z_{on}} (V_n^+ - V_n^-) = \frac{1}{\sqrt{Z_{on}}} (a_n - b_n) \]

The power delivered to the \(n^{th} \) port in terms of the new wave coefficients is

\[
P_n = \frac{1}{2} \text{Re} \left[V_n I_n^* \right] = \frac{1}{2} \text{Re} \left[(a_n + b_n)(a_n^* - b_n^*) \right] = \frac{1}{2} \text{Re} \left[|a_n|^2 - |b_n|^2 + (a_n^* b_n - a_n b_n^*) \right] = \frac{1}{2} \text{Re} \left[|a_n|^2 - |b_n|^2 \right] \quad \text{(independent of } Z_{on})
\]

The *generalized scattering matrix* \([S]\) relates the normalized incident and scattered wave coefficients \(a_n \) and \(b_n \).

\[
[b] = [S][a]
\]
or

\[
\begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3 \\
 \vdots \\
 b_N
\end{bmatrix} =
\begin{bmatrix}
 S_{11} & S_{12} & S_{13} & \cdots & S_{1N} \\
 S_{21} & S_{22} & S_{23} & \cdots & S_{2N} \\
 S_{31} & S_{32} & S_{33} & \cdots & S_{3N} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 S_{N1} & S_{N2} & S_{N3} & \cdots & S_{NN}
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 \vdots \\
 a_N
\end{bmatrix}
\]
where the element S_{ij} is defined as

$$S_{ij} = \frac{b_i}{a_j} \quad \text{with} \quad a_k = 0 \quad \text{for} \quad k \neq j$$

The elements of the generalized scattering matrix are related to scattering matrix by

$$S_{ij} = \frac{V_i^- \sqrt{Z_{oj}}}{V_j^+ \sqrt{Z_{ol}}} \quad \text{with} \quad V_k^+ = 0 \quad \text{for} \quad k \neq j$$

where

$$S_{ij} = \frac{V_i^-}{V_j^+} \quad \text{with} \quad V_k^+ = 0 \quad \text{for} \quad k \neq j$$

defines the corresponding scattering matrix term.
Example (previous s-parameter example)

![Diagram of a reciprocal network with ports #1 and #2, scattering parameters, and characteristic impedances.]

The scattering matrix for this example was found to be

\[
[S] = \begin{bmatrix}
\frac{Z_2 - Z_1 + jX}{Z_1 + Z_2 + jX} & \frac{2Z_1}{Z_1 + Z_2 + jX} \\
\frac{2Z_2}{Z_1 + Z_2 + jX} & \frac{Z_1 - Z_2 + jX}{Z_1 + Z_2 + jX}
\end{bmatrix}
\]

Note that the scattering matrix for this reciprocal network is not symmetric. The scattering matrix for this configuration would be symmetric if the characteristic impedances of the two transmission lines were equal. We can show that the generalized scattering matrix is symmetric for N-port networks with ports of different characteristic impedance. According to the transformation of the scattering matrix to the generalized scattering matrix:

\[
S_{11} = \frac{b_1}{a_1} = \frac{V_1^-}{V_1^+} \quad S_{12} = \frac{b_1}{a_2} = \frac{V_1^- \sqrt{Z_2}}{V_2^+ \sqrt{Z_1}}
\]

\[
S_{21} = \frac{b_2}{a_1} = \frac{V_2^- \sqrt{Z_1}}{V_1^+ \sqrt{Z_2}} \quad S_{22} = \frac{b_2}{a_2} = \frac{V_2^-}{V_2^+}
\]
The generalized scattering matrix is symmetric (given the reciprocal network) even though the characteristic impedances of the two ports are unequal.

\[
[S] = \begin{bmatrix}
\frac{Z_2 - Z_1 + jX}{Z_1 + Z_2 + jX} & \frac{2Z_1}{Z_1 + Z_2 + jX} \sqrt{Z_2} \\
\frac{2Z_2}{Z_1 + Z_2 + jX} \sqrt{Z_1} & \frac{Z_1 - Z_2 + jX}{Z_1 + Z_2 + jX}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\frac{Z_2 - Z_1 + jX}{Z_1 + Z_2 + jX} & \frac{2\sqrt{Z_1Z_2}}{Z_1 + Z_2 + jX} \\
\frac{2\sqrt{Z_1Z_2}}{Z_1 + Z_2 + jX} & \frac{Z_1 - Z_2 + jX}{Z_1 + Z_2 + jX}
\end{bmatrix}
\]
Equivalent Circuits for Two-Port Networks

Once the two-port parameters (Z, Y, S, T) for a given microwave device have been determined, we need a circuit configuration which is equivalent to the defining equations of the respective two-port parameters. If the microwave device is reciprocal, the equivalent circuit can be defined in terms of six independent parameters (the real and imaginary parts of three unique matrix elements). There are an unlimited number of equivalent circuit configurations that are possible. Two commonly used configurations are the *T-network* in terms of impedance parameters and the *π-network* in terms of admittance parameters. These networks are easily implemented with any type of two-port parameters given the basic transformations among the different sets of parameters (see Table 4.2, p. 211)

T-Network

\[
V_1 = I_1 (Z_{11} - Z_{12}) + (I_1 + I_2)Z_{12} = Z_{11}I_1 + Z_{12}I_2 \\
V_2 = I_2 (Z_{22} - Z_{12}) + (I_1 + I_2)Z_{12} = Z_{12}I_1 + Z_{22}I_2
\]
\(\pi \)-Network

\[I_1 = V_1(Y_{11} + Y_{12}) + (V_1 - V_2)(-Y_{12}) = Y_{11}V_1 + Y_{12}V_2 \]

\[I_2 = V_2(Y_{22} + Y_{12}) + (V_1 - V_2)(-Y_{12}) = Y_{12}V_1 + Y_{22}V_2 \]
Signal Flow Graphs

Signal flow graphs are a graphical technique of analyzing microwave networks in terms of the incident and scattered (transmitted and reflected) waves at the network ports. Signal flow graphs consist of nodes and branches which may be related directly to the generalized scattering parameters.

Nodes - Each node represents either an incident wave (a wave entering the port) or a scattered wave (a wave leaving the port). Thus, the signal flow graph for an N-port network contains 2N nodes. Following the convention of the generalized scattering parameters, the \(i^{th}\) port is defined by two nodes: \(a_i\) represents the wave entering the \(i^{th}\) port while \(b_i\) represents the wave leaving the \(i^{th}\) port.

Branches - Each branch is a path from an \(a\)-node to a \(b\)-node which represents the signal flow within the N-port network. Thus, each branch is associated with a particular scattering parameter or a reflection coefficient.

\[b_1 = S_{11}a_1 + S_{12}a_2 \]

\[b_2 = S_{21}a_1 + S_{22}a_2 \]
Decomposition Rules for Signal Flow Graphs

Series Rule

\[v_2 = S_{21} v_1 \]

\[v_3 = S_{32} v_2 = S_{21} S_{32} v_1 \]

Parallel Rule

\[v_2 = S_a v_1 + S_b v_1 = (S_a + S_b)v_1 \]

Self-loop Rule

\[v_2 = S_{21} v_1 + S_{22} v_2 \]

\[v_3 = S_{32} v_2 \]
Splitting Rule

\[v_4 = S_{42}v_2 = S_{21}S_{42}v_1 \]

Example (Signal flow graph) Determine the input reflection coefficient (\(\Gamma_{in} \)) for the terminated two-port network shown below using a signal flow graph.

\[\Gamma_{bn} = \frac{b_1}{a_1} \]

The input reflection coefficient may be determined by manipulating the signal flow graph for the terminated two-port network. We need signal graph models for the connection of the source to the two-port and the connection of the load to the two-port.
The signal flow graph for the source in the terminated two-port network must include reflections due to mismatch. The signal flow graph model for the input source (shown below) accounts for scattered waves from the two port network that may be reflected back to the network through the reflection coefficient for the source, Γ_s. Note that the input voltage has been normalized according to the scattering parameter definition.

$$a_s = \frac{V_s}{\sqrt{Z_0}}$$

$$a = a_s + \Gamma_s b$$

The signal flow graph for the termination accounts for reflections due to mismatch through the load reflection coefficient, Γ_l.

Combining the signal flow graphs of the source, the load and the two-port network yields the signal flow graph for the complete circuit.
We may use the splitting rule on node a_2. The path directly from a_2 to b_2 can be transformed into a self-loop by noting that

$$a_2 = \Gamma_l b_2$$

$$b_2 = S_{21} a_1 + S_{22} a_2 = S_{21} a_1 + S_{22} \Gamma_l b_2$$

Node b_2 can then be transformed using the self-loop rule.

The path from node a_1 to b_2 to a_2 to b_1 can then be combined into a single path using the series rule.
The two paths between nodes a_i and b_i can be combined using the parallel rule.

\[\frac{\Gamma_l S_{12} S_{21}}{1 - S_{22} \Gamma_l} \]

The single path from node a_i to b_i allows us to write the input reflection coefficient directly from the reduced signal flow graph.

\[\Gamma_{in} = S_{11} + \frac{\Gamma_l S_{12} S_{21}}{1 - S_{22} \Gamma_l} \]