3.24. This problem is somewhat vague in that it asks for the voltage across R_4 but does not give us the polarity for such voltage. We will assume that this voltage, v_2, has the polarity as shown below.

Examing the voltage sources, we see:

$$v_1 + v = 5V \quad \rightarrow \quad v = 5 - v_1$$
$$v_3 = v_2 + 70v = v_2 + 70(5 - v_1) = -70v_1 + v_2 + 350$$

KCL at node v_1:

$$\frac{5 - v_1}{2.2k} + \frac{v_2 - v_1}{6.8k} + \frac{v_3 - v_1}{1.8k} = 0$$
$$1530 - 306v_1 + 99v_2 - 99v_1 + 374v_3 - 374v_1 = 0$$
$$-779v_1 + 99v_2 + 374v_3 = -1530$$
$$-779v_1 + 99v_2 + 374(-70v_1 + v_2 + 350) = -1530$$
$$-26959v_1 + 473v_2 = -132430 \quad (1)$$

KCL at supernode S:

$$\frac{v_1 - v_2}{6.8k} + \frac{v_1 - v_3}{1.8k} + \frac{0 - v_2}{220} = 0$$
$$99v_1 - 99v_2 + 374v_1 - 374v_3 - 3060v_2 = 0$$
$$473v_1 - 3159v_2 - 374v_3 = 0$$
$$473v_1 - 3159v_2 - 374(-70v_1 + v_2 + 350) = 0$$
$$26653v_1 - 3533v_2 = 130900 \quad (2)$$

Equations (1) and (2) are the node equations. Solving

$$\begin{bmatrix} -26959 & 473 \\ 26653 & -3533 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} -132430 \\ 130900 \end{bmatrix}$$
yields

\[v_1 \approx 4.912 \text{V} \]
\[v_2 \approx 8.757 \text{mV} \]

Thus, we have \(v_2 \approx 8.757 \text{mV} \) as the desired answer.

3.27. We define three mesh currents \(i, i_1, \) and \(i_2 \) as shown below. We also define a loop \(S \) which avoids the dependent current source.

![Circuit Diagram](image)

We note:

\[i - i_2 = 0.2v_x \quad \rightarrow \quad v_x = 5i - 5i_2 \]
\[\frac{v_x}{1.2k} = i_1 - i_2 \quad \rightarrow \quad i_1 = \frac{v_x}{1.2k} + i_2 = \frac{5i - 5i_2}{1.2k} + i_2 = \frac{5}{1.2k}i + \frac{1195}{1.2k}i_2 \]

KVL around \(i_1 \):

\[
50i_1 + v_x - 5.6 = 0
\]
\[
50 \left(\frac{5}{1.2k}i + \frac{1195}{1.2k}i_2 \right) + (5i - 5i_2) = 5.6
\]
\[
\frac{6250}{1.2k}i + \frac{53750}{1.2k}i_2 = 5.6 \quad (3)
\]

KVL around loop \(S \):

\[
330i_2 + 440i - v_x = 0
\]
\[
330i_2 + 440i - (5i - 5i_2) = 0
\]
\[
435i + 335i_2 = 0 \quad (4)
\]

Equations (3) and (4) are the mesh equations. We solve

\[
\begin{bmatrix}
6250 \\ 1.2k \\
435 \\
335 \\
\end{bmatrix}
\begin{bmatrix}
i \\
i_2 \\
\end{bmatrix}
=
\begin{bmatrix}
5.6 \\
0 \\
\end{bmatrix}
\]

to yield

\[i \approx -0.106 \text{A} \]
\[i_2 \approx 0.137 \text{A} \]

Thus, we have \(i \approx -0.106 \text{A} \) as the desired answer.
3.41. The problem asks for the voltage across R, but, again, does not specify the polarity of said voltage. We denote this voltage v and assume the polarity as indicated below:

![Circuit Diagram]

Working superposition, we consider each of the two sources in turn, zeroing out the other.

Voltage Source We zero out the current source by replacing it with an open circuit and find v_1:

![Redrawn Circuit Diagram]

We see that voltage division will directly yield v_1:

$$v_1 = \frac{0.23 \parallel 1}{0.23 \parallel 1 + 0.3} \cdot 12 \\ \approx 4.608 \text{V}$$

Current Source We zero out the voltage source by replacing it with a short circuit and find v_2:

![Redrawn Circuit Diagram]

Using current division coupled with Ohm’s law, we arrive at

$$v_2 = \frac{\frac{1}{0.23}}{1 + \frac{1}{0.3} + \frac{1}{0.23}} \cdot 12 \cdot 0.23 \\ \approx 1.382 \text{V}$$
Thus, we have by superposition

\[v = v_1 + v_2 \]
\[\approx 4.608 + 1.382 \]
\[= 5.99V \]

3.51. To find the Thevenin equivalent circuit, we first find the equivalent resistance, \(R_T \), with the voltage source zeroed out (i.e., short circuit):

Thus,

\[R_T = 1 + 5 \parallel 4 \]
\[\approx 3.222\Omega \]

Next, we find the equivalent, open-circuit voltage, \(v_T \):

Using voltage division, we have

\[v_T = \frac{4}{4+5} \cdot 36 \] \hspace{1cm} (5)
\[= 16V \] \hspace{1cm} (6)

Thus, the Thevenin equivalent circuit is:
To find the Thevenin equivalent circuit, we first find the equivalent resistance, \(R_T \), with the voltage source zeroed out (i.e., short circuit) and the current source zeroed out (i.e., open circuit):

\[
\begin{align*}
R_T &= 4\Omega \\
\end{align*}
\]

We have directly

\(R_T = 4\Omega \)

We then find the open-circuit voltage, \(v_T \):

\[
\begin{align*}
\text{KVL around loop 1:} & \\
-3 + v_T + v_1 &= 0 \\
\therefore \quad v_T &= 3 - v_1 \\
&= 3 - 8 \\
&= -5\text{V} \\
\end{align*}
\]

Thus, the Thevenin equivalent circuit, with the 3-\(\Omega \) load resistor is:

\[
\begin{align*}
\text{We employ voltage division to find } v: \\
&= \frac{3}{3 + 4} (-5) \\
&= -2.143\text{V}
\end{align*}
\]
3.53. To find the Norton equivalent circuit, we first find the equivalent resistance, R_N, with the voltage source zeroed out (i.e., short circuit) and the current source zeroed out (i.e., open circuit):

$$R_N = 1 + 3 + 1 \parallel 3$$

$$= 4 + \frac{1}{1 + \frac{3}{3}}$$

$$= 4.75\Omega$$

We then find the short-circuit current, i_N:

We note:

$$i_2 - i_N = 2 \quad \rightarrow \quad i_2 = i_N + 2$$

KVL around i_1:

$$i_1 + 3(i_1 - i_2) - 2 = 0$$

$$4i_1 - 3i_2 = 2$$

$$4i_1 - 3(i_N + 2) = 2$$

$$4i_1 - 3i_N = 8$$

(7)

KVL around loop S:

$$i_2 + 3i_N + 3(i_2 - i_1) = 0$$

$$4i_2 - 3i_1 + 3i_N = 0$$

$$4(i_N + 2) - 3i_1 + 3i_N = 0$$

$$-3i_1 + 7i_n = -8$$

(8)

Equations (7) and (8) are the mesh equations. We solve

$$\begin{bmatrix} 4 & -3 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} i_1 \\ i_N \end{bmatrix} = \begin{bmatrix} 8 \\ -8 \end{bmatrix}$$

and arrive at

$$i_1 \approx 1.684A$$

$$i_N \approx -0.421A$$
The Norton equivalent circuit is then:

\[-0.421 \, \text{A} \quad 4.75 \, \Omega \]