Problem 1 (25 pts.) Two infinitely long parallel wires in air are separated by 10 cm and carry 15 A in opposite directions \(I_1 = 15 \vec{x} \) at \(y = 5 \text{ cm}, \ z = 0 \) and \(I_2 = -15 \vec{x} \) at \(y = -5 \text{ cm}, \ z = 0 \).

(a.) Determine the vector force per unit length acting on the conductor carrying \(I_1 \).

(b.) Determine the vector magnetic field at the rectangular coordinate point \(P = (0, 8, 0) \text{ cm} \).

(c.) If, in addition to the two infinitely long wires, a circular loop of 1 cm radius lies in the \(x-y \) plane centered at the coordinate origin, determine the vector loop current which would produce a magnetic field of zero at the loop center.

Problem 2. (25 pts.) A 5-turn rectangular wire loop occupies the surface defined by \(0 \leq x \leq 0.2 \text{ m} \) and \(0 \leq y \leq 0.4 \text{ m} \) in the \(x-y \) plane. Determine the induced emf across the open-circuited ends of the coil for the following magnetic flux conditions.

(a.) \(\mathbf{B} = 2xy^2 \mathbf{\hat{z}} \) (mT)

(b.) \(\mathbf{B} = x \cos(3y) \sin(10^4 t) \mathbf{\hat{z}} \) (mT)

(c.) \(\mathbf{B} = 2x \cos(y) \sin(10^4 t) \mathbf{\hat{x}} + x \cos(3y) \sin(10^4 t) \mathbf{\hat{z}} \) (mT)

Problem 3. (25 pts.) A long cylindrical conductor (radius = \(a \)) lying along the \(z \)-axis carries a current density characterized by \(\mathbf{J} = J_0 (1 - r/a) \mathbf{\hat{z}} \) A/m\(^2\) where \(J_0 \) is a constant and \(r \) is the radial distance from the cylinder axis. Assuming the conductor lies in air, use Ampere's law to determine an expression for the magnetic field

(a.) inside the conductor (\(r < a \)).

(b.) outside the conductor (\(r > a \)).

Problem 4. (25 pts.) The insulator in a parallel plate capacitor (plate area = 16 cm\(^2\), plate separation = 20 mm) is characterized by \(\varepsilon = 4.5 \) and \(\sigma = 10^{-12} \text{ S/m} \). A voltage \(v(t) = 10 \cos(\omega t) \) volts is applied across the capacitor plates, where \(\omega = 2\pi \times 10^7 \text{ rad/s} \). Determine

(a.) the electric field \(\mathbf{E}(t) \) between the capacitor plates.

(b.) the conduction current density in the capacitor.

(c.) the displacement current density in the capacitor.

(d.) the capacitance \(C \) in the capacitor equivalent circuit.

(e.) the resistance \(R \) in the capacitor equivalent circuit.
1. (a) \[F = \frac{\mathbf{u}_0 I_1 \mathbf{I}_2}{2\pi a} \mathbf{y} = \frac{\mathbf{u}_0 (15)^3}{2\pi (0.10)} \mathbf{y} = \left[0.45 \mathbf{y} \right]_{mN} \]

(b) \[\mathbf{H} = \frac{I_1}{2\pi r} \mathbf{J} = \frac{15}{2\pi (0.02)} \mathbf{J} = \left[15 \mathbf{J} \right]_{A/m} \]

(c) \[\mathbf{H}_{loop} = -[H_1 + H_2] = - \left[\frac{15 \mathbf{J}}{2\pi (0.02)} \right] = 95.49 \mathbf{A} \]

2. \[\mathbf{V} = -N \frac{d\mathbf{M}}{dt} = -5 \frac{d\mathbf{B}}{dt} \cdot ds^2 \]

3. Ampere's Law on a circular path of radius \(r \)

\[\oint \mathbf{H} \cdot d\mathbf{l} = \oint \mathbf{H}_0 \cdot d\mathbf{l} = H_0 \oint d\mathbf{l} = H_0 (2\pi r) = I_{enc} \]

(a) For \(r < a \), \[I_{enc} = \int \frac{d\mathbf{B}}{dt} \cdot ds^2 = \int_0^a \int_0^{2\pi} \left[H_0 \mathbf{J}_0 (1-r)^2 \right] r \cdot dsd\mathbf{\theta} \]

(b) For \(r > a \), \[I_{enc} = \int \frac{d\mathbf{B}}{dt} \cdot ds^2 = \int_0^a \int_0^{2\pi} \left[\mathbf{J}_0 (2\pi r) \right] r \cdot dsd\mathbf{\theta} \]

4. (a) \[E(x) = \frac{V(x)}{d} = 10 \cos \omega t / 0.02 = \frac{500 \cos (2\pi 10^7 t)}{V/m} \]

(b) \[\mathbf{J}(x) = \mathbf{E}(x) = (10^{-12}) 500 \cos (2\pi 10^7 t) = 0.5 \cos (2\pi 10^7 t) \mathbf{A}/m^2 \]

(c) \[\mathbf{J}_d(x) = \frac{d\mathbf{B}(x)}{dt} = \epsilon \frac{d\mathbf{E}(x)}{dt} = 4.5 \epsilon_0 (500)(2\pi 10^7) [\cos (2\pi 10^7 t)] \]

\[= -1.25 \sin (2\pi 10^7 t) \mathbf{A}/m^2 \]

(d) \[C = \frac{\epsilon_0 \mathbf{A}}{d} = (4.5 \epsilon_0) (16 \times 10^{-4}) / 0.020 = 3.19 \rho F \]

(e) \[R = \frac{d}{\sigma \mathbf{A}} = 0.020 / [10^{-12} (16 \times 10^{-4})] = 1.25 \times 10^{13} \Omega \]