Multigraph-Based Low-Rank Tensor Approximation for Hyperspectral Image Restoration

Na Liu, Member, IEEE, Wei Li, Senior Member, IEEE, Ran Tao, Senior Member, IEEE, Qian Du, Fellow, IEEE, and Jocelyn Chanussot, Fellow, IEEE

Abstract—Low-rank-tensor-approximation (LRTA)-based hyperspectral image and hyperspectral imagery (HSI) restoration has drawn increasing attention. However, most of the methods construct a hidden low-rank tensor by utilizing the nonlocal self-similarity (NLSS) and global spectral correlation (GSC) inherited by HSIs. Although achieving state-of-the-art (SOTA) restoration performance, NLSS and GSC have limitations. NLSS is introduced from natural image denoising to remove spatially independent identically distributed (i.i.d.) Gaussian and impulse noise, while GSC, which is naturally possessed by HSIs, is adopted to maintain the spectral integrity and remove spectrally, i.i.d., degradations. Therefore, NLSS and GSC may not be successfully used for complex HSI restoration tasks, such as destriping, cloud removal, and recovery of atmospheric absorption bands. To solve the issue, borrowing the idea from manifold learning, the geometry information characterized by proximity relationship, is integrated with the LRTA to solve the above issue, named multigraph-based LRTA (MGLRTA). Different from most of the existing methods, the proposed MGLRTA directly models an HSI as a low-rank tensor and efficiently explores the extra proximity information on the defined graphs that are not only inherited by the low-rank constraints but also naturally possessed in HSIs. A well-posed iterative algorithm is designed to solve the restoration problem. Experimental results on different datasets that cover several severe degradation scenarios demonstrate that the proposed MGLRTA outperforms the SOTA HSI restoration methods.

Index Terms—Graph signal processing, hyperspectral imagery, image restoration, low-rank tensor.

I. INTRODUCTION

HYPERSPECTRAL image and hyperspectral imagery (HSI) is one of the typical high-dimensional data, consisting of hundreds of narrow spectral bands with abundant spectral information, which has superiority in discriminating various ground targets compared with traditional multispectral remote sensing imagery [1], [2]. However, due to the passive imaging mechanism for spaceborne and airborne imaging spectrometers, HSIs are exposed to different kinds of noise sources and disturbances from atmospheric perturbation, platform turbulence, and photodetectors’ miscalibration [3], [4]. Therefore, the acquired HSIs are inevitably degraded. Restoring a clean HSI from the captured degraded HSI is expected to remove the noise contained in the image and improve the quality of the image effectively.

There has been a multitude of HSI restoration algorithms proposed over the past decades [3]. At the early stage, mainly filtering-based methods (e.g., Fourier and Wavelet) were introduced from conventional optical imagery denoising approaches [5]. However, noise distribution in HSIs is often too complex (not only Gaussian or impulse noise) to be captured by a simple transform. More sophisticated HSI restoration methods are developed to pay more attention to characterize HSIs’ intrinsic structures but not noise distribution. To this end, the restoration problem in an HSI is mathematically formulated as an optimization, which derives an optimal solution of the restored HSI \(\mathbf{X} \in \mathbb{R}^{M \times N \times D} \) (here, \(M \) and \(N \) are spatial sizes, and \(D \) means the number of spectral bands) from an observed degraded HSI \(\mathbf{Y} \in \mathbb{R}^{M \times N \times D} \) under the specific characterization of \(\mathbf{X} \). These characterizations are summarized into two categories: global spectral correlation (GSC) and nonlocal self-similarity (NLSS). Most of the HSI restoration methods utilize at least one of them when formulating the restoration problem [6]–[13].

GSC-based low rankness is one of the most important properties for HSIs due to its strong spectral correlation [9]. Although achieving satisfactory restoration performance, many such restoration methods [14] entail casting the HSI cubes as 2-D matrices to exploit the low-rank property. However, such a matricization of the 3-D image cube tends to obfuscate both the spatial texture structure and the spatial–spectral dependence within the image cube [15]. As an alternative to
matricization, there has been increasing interest in treating an HSI as a multidimensional array representation of an order-3 tensor, in which tensor theory and processes are brought to bear on the HSI restoration task. A popular strategy is to deploy a tensor decomposition, such as the well-known Tucker decomposition [15], [16], tensor ring decomposition [13], [17], and low-rank tensor factorization [12], [18]. In addition to GSC-based low-rank tensor approximation (LRTA), NLSS is also a powerful paradigm to deploy HSI restoration methods [17], [19]–[23]. NLSS-based restoration methods first construct a set of new subtensors by clustering similar patches across the image into groups. Then, restoration is performed on these newly constructed subtensors based on low-rank approximation. Table I summarizes some representative LRTA-based approaches that have been proposed recently by utilizing different prior and regularization.

By utilizing NLSS and GSC, these LRTA-based restoration methods have achieved satisfactory performance for HSI restoration. However, it is observed from Table I that most of the methods perform well when removing independent identically distributed (i.i.d.) Gaussian, impulse, and sparse noise only. However, HSIs suffer from more complex and severe degradations in a harsh environment, such as dense stripes, heavy cloud shadows, and atmospheric absorptions. To handle complex degradation, LRTA-based restoration methods considering GSC and NLSS may not be conveniently extended to guarantee the restoration performance and generalization without additional regularization terms and auxiliary information [26], [27]. One of the most frequently adopted regularization terms is total variation (TV) [10], [16], [25], [28], which effectively describes the local spatial and spectral smoothness of the restored HSIs [27], [28]. The auxiliary information may be an observation index set [9], [19], [22], [23], which is employed to indicate the complete observations and incomplete observations of the degraded HSIs. By utilizing the provided auxiliary information, the complex HSI restoration is solved by inpainting.

Recently, some deep learning methods have been proposed to treat HSI restoration [29]–[33]. They achieve the state-of-the-art (SOTA) performance in specific restoration task. However, bottlenecks still remain for convolutional-neural-network (CNN)-based deep learning methods. First, compared with model-based methods, data-driven deep learning methods have high computational complexity in training large amounts of network parameters, which needs extra labeled data and leads to high expenditure. Second, if a deep learning model is trained for a specific task, it is impossible to adapt it to other degradation cases, which limits their generalization.

In order to remedy the deficiencies in existing strategies and better adapt to severe and complex HSI degradations, a multigraph-based LRTA (MGLRTA) is proposed for HSI restoration, which integrates geometry-based side information into LRTA to constrain a smooth solution of the restored HSIs. Specifically, the contributions are given as follows.

1) An LRTA framework driven by trace norm (i.e., [34]) is adopted to effectively capture the simple, yet intrinsic, structurally spatial–spectral correlation in HSI. Rather than blindly estimating the entire restored image by adopting sparse and low-rank priors as done in previous algorithms [15], we instead deploy the restoration by learning the relationship between noisy and pure pixels, as well as propagating the learned structure information to completing pixels in missing regions by imposing low-rank constraints.

2) Multigraph-aided LRTA restoration is developed to explore the intrinsic local proximity in HSI, which is characterized by geometry structure similarity between rows, columns, and spectral bands. Taking rows, columns, and spectral bands as a unit to define row graph, column graph, and spectral bands graph, side information is incorporated into LRTA.

As classical high-dimensional data [1], the intrinsic geometry structures of HSIs with the graph spectral analysis have been well explored in HSI classification [35] and dimensional-ity reduction [36], [37]. To the best of our knowledge, there are only a few works focusing on using graph-based methods in HSI restoration [28]. In [28], pixelwise graph representation is constructed in each band of the HSI and integrated into TV regularization (TVTR) as weighted coefficients. Nevertheless, the denoising performance cannot be guaranteed without a bandwise compensation scheme. In [38], a pixelwise graph regularizer is incorporated into the low-rank representation to preserve the intrinsic local structure of the recovered HSIs, but the proposed method only works on HSI destriping. Existing graph-based methods provide a promising direction to take full advantage of high GSC and local manifold structures. However, some limitations remain. On the one hand, these methods construct pixelwise graphs mainly, which makes it difficult to incorporate the spatial–spectral integration into the tensor-based reconstruction models. On the other hand, existing graph-based methods only treat single restoration tasks.

In addition, in contrast to prior NLSS-based techniques (e.g., [17]), which all use patch clustering, graph structure preservation that propagates known information of observed pixels to missing pixels is employed by learning similarity both spatially and spectrally on a graph rather than spatially only. Besides, the traditional low-rank tensor completion model requires the observation values should follow a uniform distribution, and each column/row and each spectral band should

<table>
<thead>
<tr>
<th>Methods</th>
<th>Prior</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRTDTV [16], 2017</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>JLTVN [12], 2019</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LRTDGS [15], 2019</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NLR-CPTD [24], 2019</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TVTR [13], 2019</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NLLR-TC [22], 2019</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TV-NLRTD [23], 2020</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NLTR [17], 2020</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LRTP-DPR [18], 2020</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>WLRT [23], 2020</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NGMeet [19], 2020</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>AATV-NN [10], 2021</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OLRT [9], 2021</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table I: List of the Representative LRTA-Based HSI Restoration Methods.
have at least an observed entry to exactly recover the missing values [39]. However, requirements are too strict to reconstruct an HSI because noise distribution in HSI is complex and unpredictable. For example, stripes lead to the missing of an entire column, the cloud makes the pixels in an irregular patch missing across all bands, and spectral absorption loses an entire band located in a specific spectral wavelength. Thus, introducing geometry structure via a graph in the convex LRTA can effectively address the preceding problems.

The remaining of this article is organized as follows. After introducing some basic mathematical preliminaries and related work in Section II-A, the details of the MGLRTA algorithm are presented next in Section III, followed by experimental results in Section IV that compares the performance of the proposed algorithm against that of several other SOTA restoration approaches. Finally, Section V concludes this article with some concluding remarks.

II. MATHEMATICAL PRELIMINARIES AND RELATED WORK

A. Mathematical Preliminaries

A real-valued order-\(n\) tensor is denoted as \(\mathcal{X} \in \mathbb{R}^{I_1 \times \cdots \times I_k \times \cdots \times I_n}\), with each element being \(x_{i_1,\ldots,i_k,\ldots,i_n}\), where \(I_k\) is the dimension of mode \(k\) for \(1 \leq k \leq n\). A tensor may be unfolded into a matrix along a single mode; the “unfold” operation along mode \(k\) is defined as unfold\(_k(\mathcal{X}) = X(k) \in \mathbb{R}^{I_1 \times \cdots \times I_{k-1} \times I_{k+1} \times \cdots \times I_n}\). Correspondingly, the “fold” operation reverses the unfolding, fold\(_k(X(k)) = \mathcal{X}\). The Frobenius norm of a tensor is defined as \(\|X\|_F = (\sum_{x_{i_1,\ldots,i_n}} |x_{i_1,\ldots,i_n}|^2)^{1/2}\) such that \(\|X\|_F = \|X(k)\|_F\). The multiplication of a tensor \(\mathcal{X}\) with a matrix \(A \in \mathbb{R}^{L_1 \times I_k}\) on mode \(k\) is defined by \(Y = \mathcal{X} \times_k A\), where \(Y \in \mathbb{R}^{I_1 \times \cdots \times I_{k-1} \times L_1 \times I_{k+1} \times \cdots \times I_n}\), and \(y_{i_1,\ldots,i_{k-1},l_1,i_{k+1},\ldots,i_n} = \sum_{i_k=1}^{I_k} x_{i_1,\ldots,i_k,\ldots,i_n} a_{l_1,i_k}\). Alternatively, after an unfold operation along mode \(k\), the multiplication is defined as \(Y(k) = A X(k)\). Trace norm is commonly used as a convex proxy for rank [34], \(\|X\|_* = \sum_{k=1}^{k} \alpha_k \|X(k)\|_2\), where \(\|\cdot\|_2\) is the matrix spectral norm, and \(\alpha_k \geq 0\) are weights such that \(\sum_{k=1}^{k} \alpha_k = 1\).

B. Graph Signal Processing and Matrix Completion on Graph

Signal processing on a graph is an effective approach to describe and process high-dimensional data. The key is to construct a weighted graph incorporating the similarity information of a given dataset [40], [41]. Let an undirected and weighted graph be defined as \(G = (\mathcal{V}, \mathcal{E}, \mathcal{W})\), where \(\mathcal{V}\) and \(\mathcal{E}\) denote the sets of vertices and edges of the graph, respectively, and \(\mathcal{W}\) denotes the weight matrix of edges. The degree of \(v_i \in \mathcal{V}\) is calculated as the sum of element values in the \(i\)th column of \(\mathcal{W}\), i.e., \(d_i = \sum_{j=1}^{j} w_{ij}\). The degree matrix is a diagonal one \(\mathcal{D} = \text{diag}(d_1, d_2, \ldots, d_i, \ldots, d_N)\). The Laplacian matrix is defined as \(\mathcal{L} = \mathcal{D} - \mathcal{W}\). The \(k\)-nearest neighbors of \(v_i\) constitute its neighborhood set \(\mathcal{N}_i\). Without loss of generality, given a graph \(G\), the graph signal is defined on the vertices of the graph \(f: \mathcal{V} \rightarrow \mathbb{R}\).

An intuition to the low-rank constraint on a given matrix \(M \in \mathbb{R}^{I_1 \times I_2}\) is that there is some linear dependence between its rows/columns [42]. By defining its rows/columns on the vertices of graphs, matrix completion on graph (MCG) is proposed to constrain the space of solutions in a low-rank matrix completion problem [43]

\[
\min_{M} \text{rank}(M) \\
\text{s.t. } M_{ij} = T_{ij}
\]

where \(\text{rank}(\cdot)\) indicates an operation to compute the rank of a matrix; \(\mathcal{O} \subset [I_1] \times [I_2]\) is a logical index set generated from the incomplete observation \(T \in \mathbb{R}^{I_1 \times I_2}\), wherein an element equaling to 1 indicates that the pixels are given in \(T\) at the corresponding location, and vice versa, if the element equals to 0, meaning that the corresponding pixel is missing; to be smooth with respect to the geometric structure of the rows and columns of data defined on graph [44]. For example, given a recommendation system denoted by \(M \in \mathbb{R}^{m \times n}\) with \(m\) users and \(n\) products, proximity information about rows and columns can be attained as usually some users share preferences, while products form clusters that receive similar ratings [45]. Not only in the recommendation system but also in other real-world applications (such as social networks), MCG has well-posed geometric analysis foundations tightly related to the low-rank matrix completion [46].

We define a column graph \(G_c = (\mathcal{V}_c, \mathcal{E}_c, \mathcal{W}_c)\) of \(M\) to represent the proximity structure between columns with each column \(x_i\) being defined on \(v_i\). The row graph \(G_r = (\mathcal{V}_r, \mathcal{E}_r, \mathcal{W}_r)\) is defined in a similar manner to represent the similarities of rows. MCG imposes the smoothness constraint by setting \(m_j^c \approx m_j^c\), if \((j, j') \in \mathcal{E}_c\) and results in the following formulation:

\[
\sum_{j,j'} w_{jj'} \|m_j^c - m_j^c\|_2 = \text{tr}(M^c L M^T M^c) = \|M\|_{G_c}^2
\]

where \(\text{tr}(\cdot)\) indicates an operation to compute the trace of a matrix, \(L_c\) is the Laplacian of the column graph \(G_c\), and \(\|\cdot\|_{G_c}\) is the graph Dirichlet seminorm for columns. Similarly, for row graph \(G_r\), we derive the corresponding row graph similarity relationship as \(\|M\|_{G_r}^2 = \text{tr}(M^T L_r M)\).

Based on the geometric analysis and the Laplacian spectral theory from graph signal processing, MCG develops as one of the most powerful methods toward deep learning-based graph completion [45], [47]. However, for the tensor completion problems, geometric analysis has not yet found its way to well evolve from the matrix case as the nuclear norm.

III. PROPOSED MULTIGRAPH-BASED HSI RESTORATION

A. Motivation

The underlying low-rank nature of HSIs has been widely exploited for various application purposes. For instance, Dian et al. [48] have proposed an insightful work for HSI spatial resolution improvement, which effectively exploits the nonlocal similarities of the HSIs via an original nonlocal low tensor-train rank regularization. Furthermore, Chang et al. [23] introduced a novel weighted low-rank tensor representation for HSI restoration. Liu et al. [49] integrated the fibered rank constrained tensor restoration framework with an embedded plug-and-play-based regularization for HSI restoration. These works have laid a faithful foundation to
incorporate low rankness in the proposed MGLRTA. As illustrated in Fig. 1(a)–(c), high-order singular value decomposition (HOSVD) [50] is utilized to analyze and compare the low-rank property of a given HSI with clean [i.e., Fig. 1(d)] and different degradation versions [i.e., Fig. 1(e)–(g)].

From Fig. 1(a)–(c), the singular values (in any case) decay rapidly, which explicitly indicate the low rankness of HSI. Particularly, for a clean image, the singular values on the third mode (i.e., spectral dimension), as shown in Fig. 1(c), decay much faster than that of the first two modes (spatial vertical and horizontal dimensions), as shown in Fig. 1(a) and (b), which means that a clean HSI has a stronger low rankness in spectral dimension (i.e., GSC) than spatial dimension. In addition, the presence of noise destroys the low rankness. For example, for the case of “Gaussian+Impulse” noise [i.e., Fig. 1(e)] and the case of stripes [i.e., Fig. 1(f)], the first singular value on all third orders increases obviously, and the other four singular values on the third mode decay slower than that of the clean image, which further guarantees that recovering an image by LRRTA is an effective way. We expect that the real ground-target clean HSI is characterized by strong correlations in spectrally adjacent bands and high similarity between spatially neighboring pixels; both of these manifest mathematically as low rankness both spatially and spectrally. Thus, the restoration problem is formulated as an estimation of the desired \mathcal{X} with low-rank constraints on each mode as in the formulation

$$
\min_{\mathcal{X}} \sum_{k=1}^{3} a_k \|\mathcal{X}(k)\|_*$
$$

s.t. $\mathcal{X}_I = T_I$. \hfill (3)

However, to effectively and exactly recover \mathcal{X} from the observed T_I, T_I should follow a specific distribution with a minimal sampling rate requirement [39]. Besides, each column and each row should include at least one observation. However, for HSI, the degradation is more complex and random. Thus, the observation measurements would not satisfy the requirements of exact recovery. Thus, it is necessary to develop a reconstruction model, which does not rely much on the strict observation requirements. To this end, we borrow ideas from graph signal processing and introduce additional side information to achieve a better restoration result by forcing smoothness regularization on the solution of \mathcal{X}.

On the one hand, low-rank implies the linear dependence of rows/columns/spectral bands of \mathcal{X}, which means that proximity constraints are inherited from the low-rank approximation model. On the other hand, as illustrated in Fig. 1, additional structure information does exist in HSI, which naturally admits certain regularity or smoothness on the reconstruction of \mathcal{X}. Thus, it is reasonable to characterize structural similarity between rows/columns/spectral bands with graphs.

B. Proposed MGLRTA Restoration

Manifold learning [51], [52] is an effective technique to find the intrinsic low-dimensional structure of nonlinear high-dimensional data. Due to inevitable imaging environmental disturbance and changing, the captured spectral profiles of HSIs have variability and shift. Therefore, the nonlinear structure exists in HSIs [53]. According to manifold learning, the similarity W_{ij} between pixel x_i and x_j in the original high-dimensional space is preserved after embedding the signal into low-dimensional subspace by learning an optimal projection matrix P via solving the following problem:

$$
\tilde{P} = \arg \min_{P \in \mathbb{X}^{MN}} \sum_{i \neq j} \|P^T x_i - P^T x_j\|^2 W_{ij}
$$

where B is a constraint matrix that avoids trivial solution. Borrowing the idea from manifold learning, the recovered HSI is capable of restoring the original clean image while preserving the similarity relationship naturally inherited by the clean image and induced by the low-rank property. To define the column graph $G_c = (V_c, E_c, W_c)$, each lateral slice $\mathcal{X}(:, j, :) \in [I \times N]$ is defined as an MD-dimensional signal x_j on the vertex of the column graph G_c. Then, based on different priors to the reconstructed HSI, the corresponding graph construction strategies are developed to integrate the geometry information, as shown in Fig. 2. Here, as one of the main objectives is to incorporate graph signal processing with LRRTA but not to develop the graph construction method, we adopt the basic rule in (2) to construct the graph. Similarly, for the row graph G_r and the spectral band graph G_b, we derive the corresponding row graph similarity relationship $\|\mathcal{X}\|_b^2 = \text{tr}(\mathcal{X}(i) \mathcal{L}_b \mathcal{X}(i))$ and the band graph similarity relationship $\|\mathcal{X}\|_b^2 = \text{tr}(\mathcal{X}(i) \mathcal{L}_b \mathcal{X}(i))$, with the Laplacian \mathcal{L}_b and \mathcal{L}_b of the row graph G_r and spectral band graph G_b, respectively. For the definition of affinity matrix W_r, W_c, and W_b, they are learned with different similarity measurements [54], [55]. For simplification, in this article, we just adopt the k-adjacent graph.

These similarity relationship terms are added to the restoration problem for regularization

$$
\min_{\mathcal{X}} \sum_{k=1}^{3} a_k \|\mathcal{X}(k)\|_* + \gamma_c \|\mathcal{X}\|_b^2 + \gamma_r \|\mathcal{X}\|_b^2 + \gamma_b \|\mathcal{X}\|_b^2
$$

s.t. $\mathcal{X}_I = T_I$. \hfill (5)

where k stands for 1, 2, or 3; parameters γ_c, γ_r, and γ_b control the intensity of smoothness constraints on each mode.
of the expected restoration. Setting the parameters γ_c, γ_r, γ_b, and a_2 will be discussed later in Section IV. For HSIs, the observations are often contaminated by random noise, so (5) is reformulated as

$$\min_{\mathcal{X}} \sum_{k=1}^{3} a_k \|\mathcal{X}_{(k)}\|_* + \frac{\tau}{2} \|\mathcal{X} - \mathcal{T}\|_F^2 + \gamma_c \|\mathcal{X}\|_{G_1}^2 + \gamma_r \|\mathcal{X}\|_{G_{0r}}^2 + \gamma_b \|\mathcal{X}\|_{G_{0b}}^2.$$ (6)

The restoration model (6) is regarded, in essence, as the low-rank tensor completion problem incorporating the graph-based geometric side information. As discussed in [34], tensor completion builds up the relationship between the known and unknown elements to estimate the latter. The construction of the relationship facilitates the ability to capture the information from both neighbor entries and the global structure. Inspired by this core principle, the model (6) is expected to estimate the unknown \mathcal{X} by building up its relationship to the known \mathcal{T}_{G} through observed measurements.

To introduce the TVTR-based restoration models, the graph regularization terms in (6) are replaced by a TVTR. Note that graph regularization terms developed in (6) are highly related to TVTR. In (6), if only the relationship between two adjacent columns is considered, the TV term is formulated as

$$\sum_{j} \|x_{j+1} - x_j\| = \|R_x\mathcal{X}_{(2)}\|_1 = \|\mathcal{X}_{(2)}\|_{TV,c}.$$ (7)

where R_x is the column differential operator (to distinguish with the degree matrix in Section III-A, and R denotes the differential operator here). The TV term is capable of discouraging the solution from having oscillations and preserving piecewise smoothness of the restored \mathcal{X}. To avoid the nonlinearity and nondifferentiability, (7) is also rewritten as $\|\mathcal{X}_{(2)}\|_{TV,c} = \|R_x\mathcal{X}_{(2)}\|_{F}^2$. After unfolding, the expression becomes $|\mathcal{X}_{(2)}\|_{TV,c} = \mathcal{X}_{(2)}^T R_x^* R_x \mathcal{X}_{(2)}$. Although enjoying similar ability in preserving the (piecewise) geometry smoothness structure in \mathcal{X}, they still have difference from the view of spectral graph theory. In fact, different from TV, which has a specific adjacency matrix denoted as a differential operator R_x, the graph-based geometry term (2) learns different adjacency matrices based on the known prior, i.e., j' can be any column as needed but not only the $(j-1)$th column. For example, if we want to preserve the relationship with the k nearest columns, then a k-NN-based W_k is learned. In this case, the graph-based geometry term is more general and flexible.

C. Optimization

As the trace norm is the tightest convex envelope for the rank, (6) is a convex but nonsmooth optimization because it contains nondifferential terms, belonging to the class of ℓ_1-type optimization problems. Besides, entries in the tensor \mathcal{X} are interdependent, i.e., the unfolded \mathcal{X} in each order shares the same entries and cannot be optimized independently, which is the reason that lexicographical matricization is different with tensor. Equation (6) cannot be solved directly via differential calculus. Consequently, we follow the ADMM paradigm to develop a well-posed iterative scheme for the solution. The auxiliary tensor \mathcal{M}_k’s for \mathcal{X} in each mode unfolding is introduced as

$$\min_{\mathcal{X}, \mathcal{M}_k} \sum_{k=1}^{3} a_k \|\mathcal{M}_{(k)}\|_* + \frac{\tau}{2} \|\mathcal{X} - \mathcal{T}\|_F^2 + \gamma_c \|\mathcal{X}\|_{G_1}^2 + \gamma_r \|\mathcal{X}\|_{G_{0r}}^2 + \gamma_b \|\mathcal{X}\|_{G_{0b}}^2,$$

s.t. $\mathcal{X} = \mathcal{M}_k, \quad k = 1, 2, 3$. (8)

In addition, we have Lagrange multipliers γ_k, where, again, $k \in \{1, 2, 3\}$, as well as penalty parameters β. This renders (6) separable such as it is solved via ADMM. Specifically, the augmented Lagrangian is formed as

$$L_\beta(\mathcal{X}, \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \gamma_1, \gamma_2, \gamma_3)$$

$$= \sum_{k=1}^{3} a_k \|\mathcal{M}_{(k)}\|_* + \frac{\tau}{2} \|\mathcal{X} - \mathcal{T}\|_F^2 + \gamma_c \|\mathcal{X}\|_{G_1}^2 + \gamma_r \|\mathcal{X}\|_{G_{0r}}^2 + \gamma_b \|\mathcal{X}\|_{G_{0b}}^2 + \langle \mathcal{X} - \mathcal{M}_k, \gamma_k \rangle + \frac{\beta}{2} \|\mathcal{X} - \mathcal{M}_k\|_F^2.$$

(9)

According to ADMM, the optimization problem in (6) is then easily solved via (9) with the following iterative scheme:

$$\mathcal{M}_{k,t+1} = \arg \min_{\mathcal{M}_k} L_\beta(\mathcal{X}_t, \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \gamma_{k,t}), \quad k = 1, 2, 3$$

$$\mathcal{X}_{t+1} = \arg \min_{\mathcal{X}} L_\beta(\mathcal{X}, \mathcal{M}_{k,t+1}, \gamma_{k,t}), \quad k = 1, 2, 3$$

$$\gamma_{k,t+1} = \gamma_{k,t} + \beta (\mathcal{X}_{t+1} - \mathcal{M}_{k,t+1}), \quad k = 1, 2, 3.$$ (10)

For each subproblem, the following mathematical solutions are provided.

1. Update \mathcal{M}_k for $k = 1, 2, 3$ via

$$\mathcal{M}_{k,t+1} = \arg \min_{\mathcal{M}_k} a_k \|\mathcal{M}_{(k)}\|_* + \frac{\beta}{2} \|\mathcal{X} - \mathcal{M}_k + \gamma_{k,t}\|_F^2.$$ (13)
Because it can be easily proved that \((\beta/2)\|X - \mathcal{M}_k + (\mathcal{Y}_k/\beta)\|^2_F = (\beta/2)\|X(k) - \mathcal{M}(k) + (\mathcal{Y}(k)/\beta)\|^2_F\), (13) has a closed-form solution
\[
\mathcal{M}_{k,t+1} = \text{fold}_k \left[\mathcal{D}_{1/\beta} \left(X(k) + \frac{\mathcal{Y}(k)}{\beta} \right) \right], \quad k = 1, 2, 3
\]
(14)

where \(\mathcal{D}_r(X)\) is singular-value thresholding operator [56]
\[
\mathcal{D}_r(X) = \text{US}_r[\Sigma]V^H
\]
with \(X = \text{US}[\Sigma]V^H\) being a singular value decomposition of matrix \(X\) and the matrix-valued shrinkage operator \(S_r[\cdot] = \text{sgn}(x) \max\{|x| - \tau, 0\}\) applied to each element of \(X\).

2) Update \(X\): We have
\[
X_{t+1} = \arg \min_{X} \gamma_r \|X\|^2_{\mathcal{G}_r} + \gamma_r \|X\|^2_{\mathcal{G}_r} + \gamma_b \|X\|^2_{\mathcal{G}_b}
+ \frac{\tau}{2} \|X - T\|^2_F + \frac{\beta}{2} \left\|X - \mathcal{M}_{k,t+1} + \frac{\mathcal{Y}_k}{\beta}\right\|^2_F.
\]
(16)

Here, the three graph regularizer terms are also interdependent due to the unfolding operation in each term of the same tensor. However, for each term, they share the same way to derive the solutions. Thus, we compute the solution for each term separately, corresponding to the unfolding of \(X\) in each mode. Then, \(X\) is ultimately updated with
\[
X_{t+1} = \frac{1}{3} \sum_{k=1}^{3} \text{fold}_k \left(X(k)_{t+1} \right).
\]
(17)

Taking column graph regularization term optimization as example, we have
\[
X_{(2),t+1} = \arg \min_{X_{(2)}} \gamma_r \text{tr} \left(X_{(2)}^T \mathbf{L}_c X_{(2)} \right)
+ \frac{\tau}{2} \|X_{(2)} - T_{(2)}\|^2_F
+ \frac{\beta}{2} \left\|X_{(2)} - \mathcal{M}_{2,(2),t+1} + \frac{\mathcal{Y}_{2,(2),t}}{\beta}\right\|^2_F.
\]
(18)

By setting the derivative of (18) subject to \(X_{(2)}\) to be zero, the optimality condition is expressed as
\[
\gamma_r \mathbf{L}_c X_{(2)} + \tau (X_{(2)} - T_{(2)})
+ \beta \left(X_{(2)} - \mathcal{M}_{2,(2),t+1} + \frac{\mathcal{Y}_{2,(2),t}}{\beta}\right) = 0
\]
(19)

which is rewritten as
\[
(\gamma_r \mathbf{L}_c + (\tau + \beta) \mathbf{I}_N) X_{(2)} = \beta \mathcal{M}_{2,(2),t+1} - \mathcal{Y}_{2,(2),t} + \tau T_{(2)}.
\]
(20)

Through the column-stack vectorization operator \(\text{vec}(-)\), it becomes
\[
(\gamma_r \mathbf{L}_c \otimes \mathbf{I}_{MD} + (\tau + \beta) \mathbf{I}_N \otimes \mathbf{I}_{MD}) \text{vec}(X_{(2)})
= \text{vec}(\beta \mathcal{M}_{2,(2),t+1} - \mathcal{Y}_{2,(2),t} + \tau T_{(2)}).
\]
(21)

Algorithm 1: MGLRTA HSI Restoration Algorithm

1: **Input:** degraded HSI \(X\) with \(X_{\Omega} = T_{\Omega}\); parameters \(a_k\), \(k \in \{1, 2, 3\}\); \(\gamma_r, \gamma_r, \gamma_b; \tau, T_{\text{max}}\).
2: **Initialization:** \(Y_{k,0} = 0, k \in \{1, 2, 3\}\); \(\eta_1 = 10^{-5}; t = 0; \beta = 1e-1\) and \(\mu = 1.05\).
3: Set \(X_{\Omega} = T_{\Omega}\) and \(X_{\Omega} = 0\).
4: \(\mathcal{M}_{k,t} = \text{unfold}_k (X_k)\) for \(k \in \{1, 2, 3\}\).
5: **repeat**

6: update \(\mathcal{M}_{k,t+1}\) via (14) for \(k \in \{1, 2, 3\}\).
7: update \(X_{t+1}\) via (17) with each mode-unfolding updated as like (22).
8: update Lagrange multiplier \(Y_{k,t+1}\) via (12).
9: \(t \leftarrow t + 1\).
10: **until** \(\|X_t - X_{t-1}\|_F < \eta_1\) **or** \(t > T_{\text{max}}\).
11: **return** \(X = X_t\).

Because \(\mathbf{L}_c\) is symmetric positive semidefinite, the conjugate gradient (CG) algorithm [57] is applied to compute a fast approximate solution. If the size of dataset is not that large, an explicit solution can be derived directly as
\[
X_{(2)} = (\gamma_r \mathbf{L}_c + (\tau + \beta) \mathbf{I}_N)^{-1}
\times (\beta \mathcal{M}_{2,(2),t+1} - \mathcal{Y}_{2,(2),t} + \tau T_{(2)}).
\]
(22)

The final optimization procedure for the proposed MGLRTA restoration framework is presented in Algorithm 1.

1) Computational Complexity: The per-iteration computational complexity of Algorithm 1 mainly includes two parts.

1. **Update \(\mathcal{M}_k\):** It involves computation of the nuclear proximal solutions by SVD for each mode with the complexity \(O(M^2ND + MN^2D + MND^2)\).

2. **Update \(X\):** It mainly involves the inverse of a matrix and multiplication for each mode, so the overall computation complexity is also \(O(M^2ND + MN^2D + MND^2)\).

2) Convergence: As the trace norm is a convex proxy for rank, the objective function considered in the restoration problem (6) is convex, but not differentiable. However, based on the block coordinate descent theory, the introduction of variables \(\mathcal{M}_k\) in the augmented Lagrangian (9) leads to closed solutions for both \(X\) [i.e., (17)] and \(\mathcal{M}_k\) [i.e., (14)] [34], [56].

IV. EXPERIMENTS AND ANALYSIS

One of the most important advantages of the proposed MGLRTA is simple and easy to interpret. The proposed model is efficient and may be generally extended according to different purposes by developing other LRTA models and graph-based geometry preserving schemes.

The proposed MGLRTA is compared with several classical and SOTA HSI restoration algorithms under different degradation scenarios. The comparison methods are TV-regularized low-rank matrix factorization (LRTV) [58], weighted group sparsity-regularized low-rank tensor decomposition (LRTDGS) [15], HaLRTC [34], tensor ring completion with TVTR [13], weighted low-rank tensor recovery (WLRTR) [23], CNN-based deep image prior (DIP) [30], [59], and the trainable spectral–spatial sparse (T3SC) coding.
model [60]. LRTV is often adopted as a benchmark for the representative matrix-based denoising method, which integrates the nuclear norm, TVTR, and ℓ_1-norm together in a unified framework. HaLRTC is a tensor completion method, which is also usually adopted as a benchmark in HSI restoration. TVTR, WLRTR, and the proposed MGLRTA are developed based on HaLRTC. LRTDGS is proposed for mixed noise removal. DIP is a deep-learning-based restoration method, extended from natural image restoration. T3SC is a two-layer supervised restoration model, combining deep learning techniques with the classical sparse coding strategy. For a fair comparison, we use the codes provided by the authors and carefully tuned the parameters by default or follow the rules to achieve the best performance.

A variety of full-reference image-quality measures is employed to quantitatively gauge the performance of the reconstruction techniques under consideration. Specifically, we use the peak signal-to-noise ratio (PSNR), the spectral angle mapper (SAM), the dimensionless global relative error of synthesis (ERGAS) [61], and the structural similarity index measure (SSIM) [62]. PSNR, ERGAS, and SSIM are 2-D image-distortion measures. These measures are calculated for each spectral band, and then, the results across all bands are averaged. On the other hand, SAM is defined between two hyperspectral pixel vectors; we thus average SAM across all pixel vectors in the image. Higher PSNR and SSIM values imply better-quality fusion, while lower SAM and ERGAS values correspond to better results.

A. Parameter Analysis

The MGLRTA has two groups of parameters need to be considered: trace-norm parameters α_k and graph regularization parameters γ_c, γ_r, and γ_b. These two groups of the parameters can be set empirically, which makes the restoration model flexible and easily extended to different cases. The α_k parameters in (6) control the relative intensity of the low-rank constraints on each mode of the restoration result \hat{X}. Hence, the values of α_k influence the restoration results significantly. We set $\alpha_1 = \alpha_2 = 1$ as they correspond to the two spatial directions. Typically, for HSIs, the spatial-mode ranks are much larger than that of the spectral mode [as illustrated in Fig. 3(a)]. We experimentally tune α_3 based on HaLRTC in [34] and, finally, set $\alpha_3 = 1e3$. To validate the generalization of the proposed MGLRTA, experiments on multispectral imagery (i.e., Landsat 7) are performed, where the spatial-mode ranks are almost equal to that of the spectral mode [as illustrated in Fig. 3(b)], so we set $\alpha_1 = \alpha_2 = \alpha_3 = 1$. This effect is further observed in Fig. 4. Here, nonnormalized α_k’s offer better performance than the normalized constraints with $\sum_{k=1}^{3} \alpha_k = 1$.

After fixing parameters α_k, graph regularization parameters γ_c, γ_r, and γ_b are tuned accordingly. We set $\gamma_c = \gamma_r$, empirically. As illustrated in Fig. 5, the restoration performance is sensitive to γ_b, i.e., spectral graph construction; while the change of γ_c and γ_r does not influence the restoration performance too much. The penalty parameter β controls the weighting of the fidelity term in (9), which typically relates more to the speed of convergence than to the final optimization result, so we seek appropriate values that yield convergence without excessive iteration. In this work, we experimentally set $\beta = 1e6 - 1$ and error parameter $\tau = 1e3 - 3$ for all experiments. Here, $\beta = 1e6 - 1$ produces a tradeoff of better results and convergence than $1e6 - 6$ of the penalty parameter for HaLRTC in [34]. Then, β is updated with $\beta = \mu \beta$ with μ being 1.05.

B. Destriping Performance

Two HSI datasets are adopted to add synthetic stripes, and a multispectral image corrupted with oblique stripes arising in
TABLE II
RECONSTRUCTION PERFORMANCE FOR THE STRIPED PAVIA UNIVERSITY DATASET OF VARYING DENSITY d

<table>
<thead>
<tr>
<th>Dataset</th>
<th>$d = 0.1$</th>
<th>$d = 0.5$</th>
<th>$d = 0.9$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR(dB)</td>
<td>SSIM</td>
<td>ERGAS</td>
</tr>
<tr>
<td>Striped HSI</td>
<td>23.49</td>
<td>0.6932</td>
<td>262.2060</td>
</tr>
<tr>
<td>LRTV [58]</td>
<td>46.83</td>
<td>0.9866</td>
<td>31.6676</td>
</tr>
<tr>
<td>LRTDGS [15]</td>
<td>28.67</td>
<td>0.8083</td>
<td>144.6118</td>
</tr>
<tr>
<td>HaLRTC [34]</td>
<td>32.18</td>
<td>0.9501</td>
<td>95.2884</td>
</tr>
<tr>
<td>TVTR [13]</td>
<td>33.31</td>
<td>0.9528</td>
<td>87.4341</td>
</tr>
<tr>
<td>WLRTR [23]</td>
<td>41.44</td>
<td>0.9874</td>
<td>33.1668</td>
</tr>
<tr>
<td>DIP [30]</td>
<td>37.15</td>
<td>0.9506</td>
<td>55.7212</td>
</tr>
<tr>
<td>T3SC [60]</td>
<td>42.15</td>
<td>0.9939</td>
<td>23.0688</td>
</tr>
<tr>
<td>MGLRTA</td>
<td>44.75</td>
<td>0.9942</td>
<td>22.7926</td>
</tr>
</tbody>
</table>

1) Synthetic Datasets: The Pavia University dataset acquired by a Reflective Optics System Imaging Spectrometer (ROSIS) sensor over the University of Pavia in Northern Italy is used. The top-left $256 \times 256 \times 103$ subimage of the dataset is adopted as the reference imagery. The pixel values are normalized to the range $[0, 1]$. The synthetic Indian Pines dataset with the size of $145 \times 145 \times 224$ [16], which simulates the noise-free Indian Pines, is also adopted. Specifically, stripes are added according to the process outlined in [4]. Given an HSI X of size $M \times N \times D$, synthetic stripes are generated by randomly selecting dN columns in a given band to be striped. Here, d is the parameter that controls the spatial density of the striping, $0 < d < 1$. This process is repeated independently in each of the D bands of the HSI. Thus, the synthetic stripes are aperiodic spatially and uncorrelated across the spectral bands. In addition, the $[50, 51, 100, 200]$th and $[50, 51, 100, 140]$th columns across all bands are selected as deadlines to cover a more complex case for Pavia University and synthetic Indian Pines datasets, respectively.

2) Real Dataset: The real dataset acquired by Landsat 7 ETM+. Due to the scan line corrector (SLC) failure since May 31, 2003, the acquired imagery has oblique data gaps. However, the SLC-off data are still provided as they maintain the same radiometric and geometric corrections as data collected prior to the SLC failure. The band-specific gap mask files are also provided with each Landsat 7 SLC-off level-1 data product. To quantitatively and visually compare the reconstruction performance of the proposed MGLRTA with other methods, an SLC-on dataset before May 31, 2003, was downloaded as the reference image, and the SLC-off mask file was used to generate the SLC-off image. The degradation mask is from the real world; hence, the generated image represents the real-world dataset.

3) Results Analysis: Tables II and III list the quantitative performance measures of the various algorithms on the synthetically striped Pavia University dataset and Indian Pines dataset for stripes of varying spatial density d. It is observed that the proposed MGLRTA achieves the best performance compared with traditional machine-learning-based methods. Although the restoration performance of the proposed MGLRTA is worse than that of the deep-learning-based DIP3 and T3SC4 sometimes, MGLRTA has relatively stable performance. That is, for machine-learning-based restoration

methods, with the increasing of the stripes’ density, the restoration performance decays correspondingly. However, the performance of DIP is hard to interpret physically and intuitively. As can be observed, the performance is unusually high when the density is $d = 0.5$. This effect is further shown in Figs. 6 and 7. Detailed subimages are presented in red squares. Note that T3SC adopts bandwise min–max normalization, and its pseudocolor image is brighter than the others. In particular, WLRT results in oversmoothing in that some spatial details are lost. HaLRTC and LRTV yield generally better results but still contain some weak stripe noise compared with the original clean imagery.

However, it is observed from Table IV that MGLRTA performs best among all methods for the oblique gaps inpainting. It is obvious that HaLRTC, WLRT, and MGLRTA have more considerable improvement compared with other methods. Meanwhile, it can also be observed from Fig. 8 that MGLRTA has a clear reconstruction result with less error. Although LRTV has a good reconstruction result, as shown in Fig. 6, it results in a poor reconstruction in Fig. 8. This observation validates that the proposed MGLRTA has good generalization performance to solve many real-world degradation problems while achieving better preservation of edge and texture details.

| TABLE III |
| RECONSTRUCTION PERFORMANCE FOR THE STRIPED SYNTHETIC INDIAN PINES DATASET OF VARYING DENSITY d |

<table>
<thead>
<tr>
<th></th>
<th>$d = 0.1$</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>$d = 0.5$</th>
<th></th>
<th></th>
<th></th>
<th>$d = 0.9$</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR(dB)</td>
<td>SSIM</td>
<td>ERGAS</td>
<td>SAM</td>
<td>PSNR(dB)</td>
<td>SSIM</td>
<td>ERGAS</td>
<td>SAM</td>
<td>PSNR(dB)</td>
<td>SSIM</td>
<td>ERGAS</td>
<td>SAM</td>
<td></td>
</tr>
<tr>
<td>Striped HSI [58]</td>
<td>14.91</td>
<td>0.5048</td>
<td>420.7976</td>
<td>0.3530</td>
<td>8.63</td>
<td>0.1057</td>
<td>861.2600</td>
<td>0.8062</td>
<td>6.15</td>
<td>0.0173</td>
<td>1143.7898</td>
<td>1.2601</td>
<td></td>
</tr>
<tr>
<td>LRTV [58]</td>
<td>39.86</td>
<td>0.9906</td>
<td>35.7349</td>
<td>0.0995</td>
<td>28.12</td>
<td>0.7839</td>
<td>109.0579</td>
<td>0.0760</td>
<td>17.71</td>
<td>0.3500</td>
<td>314.0800</td>
<td>0.2601</td>
<td></td>
</tr>
<tr>
<td>LRT [15]</td>
<td>21.33</td>
<td>0.8579</td>
<td>199.7278</td>
<td>0.0544</td>
<td>9.86</td>
<td>0.8726</td>
<td>756.0714</td>
<td>0.6102</td>
<td>5.76</td>
<td>0.0591</td>
<td>1196.4328</td>
<td>1.4945</td>
<td></td>
</tr>
<tr>
<td>TVTR [13]</td>
<td>21.75</td>
<td>0.9367</td>
<td>69.4574</td>
<td>0.0154</td>
<td>21.75</td>
<td>0.8801</td>
<td>189.6996</td>
<td>0.0126</td>
<td>21.28</td>
<td>0.8224</td>
<td>199.2031</td>
<td>0.0834</td>
<td></td>
</tr>
<tr>
<td>WLRT [23]</td>
<td>32.11</td>
<td>0.9485</td>
<td>60.0080</td>
<td>0.0110</td>
<td>31.70</td>
<td>0.9387</td>
<td>62.8745</td>
<td>0.0172</td>
<td>18.19</td>
<td>0.4597</td>
<td>323.1344</td>
<td>0.2438</td>
<td></td>
</tr>
<tr>
<td>DIP [30]</td>
<td>41.17</td>
<td>0.9953</td>
<td>21.1750</td>
<td>0.0072</td>
<td>33.28</td>
<td>0.9704</td>
<td>52.1509</td>
<td>0.0245</td>
<td>18.11</td>
<td>0.7245</td>
<td>19135.6852</td>
<td>0.5160</td>
<td></td>
</tr>
<tr>
<td>T3SC [60]</td>
<td>37.33</td>
<td>0.9882</td>
<td>32.0546</td>
<td>0.0144</td>
<td>40.90</td>
<td>0.9964</td>
<td>21.6948</td>
<td>0.0044</td>
<td>32.39</td>
<td>0.9735</td>
<td>60.6570</td>
<td>0.0227</td>
<td></td>
</tr>
<tr>
<td>MGLRTA</td>
<td>28.07</td>
<td>0.8982</td>
<td>164.58</td>
<td>0.1248</td>
<td>27.18</td>
<td>0.8805</td>
<td>176.6608</td>
<td>0.1344</td>
<td>26.12</td>
<td>0.8644</td>
<td>188.0795</td>
<td>0.1426</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38.29</td>
<td>0.9891</td>
<td>29.3915</td>
<td>0.0032</td>
<td>34.56</td>
<td>0.9771</td>
<td>47.3774</td>
<td>0.0223</td>
<td>24.33</td>
<td>0.8448</td>
<td>140.5439</td>
<td>0.0394</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6. Pseudocolor visualization of inpainting results for the Pavia University dataset with stripes density being 0.5; pseudocolor composed of bands 45, 15, and 20. The color bar gives the scale for the error maps. Detailed subimages are enlarged in red squares.

Fig. 7. Visualization of destriping results for the synthetic Indian Pines dataset with stripes density being 0.5; the band number is 45. The color bar gives the scale for the error maps. Detailed subimages are enlarged in red squares.
C. Cloud Removal Performance

Apart from stripes, another serious issue that optical remotely sensed imageries have is the cloud shadow cover. Cloud shadow cover leads to the loss of consecutive-region pixels. In most existing research [13], [63], a series of multitemporal images are expected to provide for the removal of the cloud and recover the cloud covering the area in the image. However, it tends to be difficult to acquire multitemporal images in real applications. In this section, we analyze cloud removal performance and clarify that the proposed MGLRTA has competitive reconstruction performance only with two time points.

1) Dataset: Here, the Bay Area scene\(^5\) was taken in the years 2013 and 2015 with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor surrounding the city of Patterson (California). The spatial dimensions are 600 × 500 pixels with 224 spectral bands. The real cloud mask from Gaofen-5 data is used to generate that cloudy Bay Area dataset.

2) Results Analysis: Because the SOTA reconstruction methods mentioned above do not report their abilities in cloud removal for short-term HSIs, we will not compare them in this part. We adequately analyze the advantages of the introduction of geometric side information for cloud removal. Visual restoration results and corresponding quantitative performance of classic HaLRTC, deep-learning-based DIP, and the proposed MGLRTA (considering two different cases) are illustrated in Fig. 9 and Table V. It is observed that both HaLRTC and MGLRTA are capable of recovering the majority of the missing values in the area covered by clouds only using the HSI with two time points. However, MGLRTA’s quantitative performance is better than that of HaLRTC. By tuning the row and column graph regularization parameters \(\gamma_r\) and \(\gamma_c\) (i.e., case 1 and case 2), the proposed MGLRTA recovers the cloudy image with errors in different regions.

D. Spectral Recovery of Atmospheric Absorption Bands

The effect of the intervening atmosphere is also one of the most severe and common factors that influence the image [64]. An entire spectral band may have to be removed due to unwanted atmospheric contamination, such as water vapor and mixed gases. Although atmospheric correction and compensation can be conducted to the level-2 data products, the produced data may not fulfill the requirements for real applications. For example, the classic Indian Pines and Pavia University datasets suffer from the same problems, and the researchers have to remove the bands covering the region of water absorption. Thus, the proposed MGLRTA is validated on the ability to recover the successive atmosphere absorption bands.

1) Dataset: The Gaofen-5 dataset covering shortwave infrared (SWIR) spectral wavelength with 180 spectral bands and a 30-m spatial resolution was taken in the year 2019 with the Advanced Hyperspectral Imager (AHSI) aboard China’s Gaofen-5 satellite [65]. The spatial dimensions are 512 × 512 pixels with 180 spectral bands covering short and infrared

\(^5\)https://citius.usc.es/investigacion/datasets/hyperspectral-change-detection-dataset

TABLE IV

Reconstruction Performance for the SLC-Off Landsat Dataset

<table>
<thead>
<tr>
<th>Method</th>
<th>PSNR (dB)</th>
<th>SSIM</th>
<th>ERGAS</th>
<th>SAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLC-off Dataset</td>
<td>15.39</td>
<td>0.6400</td>
<td>437.7463</td>
<td>0.2480</td>
</tr>
<tr>
<td>LRTV [58]</td>
<td>15.40</td>
<td>0.6400</td>
<td>437.7463</td>
<td>0.2377</td>
</tr>
<tr>
<td>LRTDGS [15]</td>
<td>16.11</td>
<td>0.4885</td>
<td>395.1153</td>
<td>0.0835</td>
</tr>
<tr>
<td>HaLRTC [34]</td>
<td>40.27</td>
<td>0.9612</td>
<td>32.2204</td>
<td>0.0866</td>
</tr>
<tr>
<td>TVTR [13]</td>
<td>20.58</td>
<td>0.7330</td>
<td>269.7683</td>
<td>0.0812</td>
</tr>
<tr>
<td>WLRT [23]</td>
<td>40.50</td>
<td>0.9626</td>
<td>32.8028</td>
<td>0.0081</td>
</tr>
<tr>
<td>DIP [30]</td>
<td>39.97</td>
<td>0.9461</td>
<td>35.3285</td>
<td>0.0161</td>
</tr>
<tr>
<td>T3SC [60]</td>
<td>24.33</td>
<td>0.9014</td>
<td>133.5152</td>
<td>0.0441</td>
</tr>
<tr>
<td>MGLRTA</td>
<td>41.85</td>
<td>0.9688</td>
<td>27.8182</td>
<td>0.0058</td>
</tr>
</tbody>
</table>

TABLE V

Reconstruction Performance of Cloud Removal Results for the Bay Area Dataset

<table>
<thead>
<tr>
<th>Method</th>
<th>PSNR (dB)</th>
<th>SSIM</th>
<th>ERGAS</th>
<th>SAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloudy Dataset</td>
<td>47.36</td>
<td>0.9574</td>
<td>99.2665</td>
<td>0.0707</td>
</tr>
<tr>
<td>HaLRTC [34]</td>
<td>60.74</td>
<td>0.9964</td>
<td>16.1055</td>
<td>0.0045</td>
</tr>
<tr>
<td>DIP [30]</td>
<td>54.43</td>
<td>0.9922</td>
<td>21.3424</td>
<td>0.0208</td>
</tr>
<tr>
<td>MGLRTA, case 1</td>
<td>Inf</td>
<td>0.9982</td>
<td>11.2741</td>
<td>0.0037</td>
</tr>
<tr>
<td>MGLRTA, case 2</td>
<td>Inf</td>
<td>0.9982</td>
<td>11.3685</td>
<td>0.0037</td>
</tr>
</tbody>
</table>

Authorized licensed use limited to: Qian Du. Downloaded on July 03,2022 at 03:01:50 UTC from IEEE Xplore. Restrictions apply.
spectral wavelengths. The \{42–58, 95–114, 176–180\}th bands are water absorption bands needed to be recovered.

2) Results Analysis: As shown in Fig. 10, several atmospheric absorption bands are exhibited before and after restoration using the proposed MGLRTA and DIP. To restore the absorption bands, \(\Omega\) is given, wherein the elements in the entire \{42–58, 95–114, 176–180\}th bands equal to 0, which makes the observations of the known elements nonuniform and successively missing, while, in such a severe case, it is further observed that the proposed MGLRTA recovers the degraded image in a satisfactory visual assessment.

E. Execution Time

Table VI summarizes the computational complexity of all comparison methods under consideration. All traditional experiments are carried out using MATLAB on an AMD Ryzen 7 5800X 8-Core Processor with 3.80 GHz and 64 GB of RAM. DIP\(^6\) is carried out using Pytorch\(^7\) on 8-GB GPU of Nvidia Geforce RTX 3070 Ti. T3SC\(^8\) is carried out using Pytorch on 12-GB GPU of Nvidia Geforce RTX 3080 Ti. Unlike DIP and other model-based methods, T3SC requires a training procedure with several hours for each kind of noise distribution, which is time-consuming. Thus, we do not compare it with the others here. The computational cost of TVTR is the highest, and the DIP ranks second. Computational costs of LRTV, LRTDGS, and HaLRT are much lower than other restoration techniques. In contrast, although costs the most time, TVTR may not achieve the best restoration performance because, without any training process, DIP’s computational cost is lower.

\(^6\)https://github.com/accreamu/deep-hs-prior
\(^7\)https://pytorch.org/
\(^8\)https://github.com/inria-thoth/T3SC
time is greatly reduced. However, compared with the proposed MGLRTA, the DIP costs more than three times as much time as MGLRTA does. Overall, the proposed MGLRTA achieves satisfactory restoration results with relatively less computation than deep-learning-based DIP.

V. CONCLUSIONS

In this article, an efficient MGLRTA algorithm for HSI restoration has been proposed, leveraging a graph regularized LRTA with the geometric side information learned from the graph signal defined on horizontal, lateral, and frontal slices of the reconstructed image tensor. The potential proximity induced by the low-rank constraint is explored and integrated with the LRTA to empower the reconstruction capability of the low-rank induced HSI restoration algorithm. The formulated convex nonsmooth optimization problem is solved with a well-posed iterative ADMM scheme. Synthetical and real data experiments are conducted to validate the proposed MGLRTA, which demonstrates that the integration of graph structure information and low rankness is effective in HSI restoration and can outperform the SOTA methods. In particular, the proposed MGLRTA is robust to noisy observations and harsh degradation cases.

REFERENCES

Ran Tao (Senior Member, IEEE) received the B.S. degree from the Electronic Engineering Institute of PLA, Hefei, China, in 1985, and the M.S. and Ph.D. degrees from the Harbin Institute of Technology, Harbin, China, in 1990 and 1993, respectively.

He was a Senior Visiting Scholar with the University of Michigan, Ann Arbor, MI, USA, and the University of Delaware, Newark, DE, USA, in 2001 and 2016, respectively. He was a Chief Professor of the Program for Changjiang Scholars and Innovative Research Team in University from 2010 to 2012. He has been a Chief Professor of the Creative Research Groups with the National Natural Science Foundation of China, Beijing, China, since 2014.

He is currently a Professor with the School of Information and Electronics, Beijing Institute of Technology, Beijing. His research interests include fractional Fourier transform and its applications, theory, and technology for radar and communication systems.

Dr. Tao is also a fellow of the Institute of Engineering and Technology and the Chinese Institute of Electronics. He was a recipient of the National Science Foundation of China for Distinguished Young Scholars in 2006 and a Distinguished Professor of the Changjiang Scholars Program in 2009. He is also the Vice-Chair of the IEEE China Council.

Qian Du (Fellow, IEEE) received the Ph.D. degree in electrical engineering from the University of Maryland, Baltimore, MD, USA, in 2000.

She is currently the Bobby Shackouls Professor with the Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA. Her research interests include hyperspectral remote sensing image analysis and applications, pattern classification, data compression, and neural networks.

Dr. Du is also a fellow of the SPIE-International Society for Optics and Photonics. She received the 2010 Best Reviewer Award from the IEEE Geoscience and Remote Sensing Society. She was the Co-Chair of the Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society from 2009 to 2013 and the Chair of the Remote Sensing and Mapping Technical Committee of the International Association for Pattern Recognition from 2010 to 2014. She is also the General Chair of the 4th IEEE GRSS Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Shanghai, China, in 2012. She has served as an Associate Editor for the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, the Journal of Applied Remote Sensing, and the IEEE Signal Processing Letters. Since 2016, she has been the Editor-in-Chief of the IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

Jocelyn Chanussot (Fellow, IEEE) received the M.Sc. degree in electrical engineering from the Grenoble Institute of Technology (Grenoble INP), Grenoble, France, in 1995, and the Ph.D. degree from the Université de Savoie, Annecy, France, in 1998.

Since 1999, he has been with Grenoble INP, where he is currently a Professor of signal and image processing. He has been a Visiting Scholar with Stanford University, Stanford, CA, USA, the KTH Royal Institute of Technology, Stockholm, Sweden, and the National University of Singapore (NUS), Singapore. Since 2013, he has been an Adjunct Professor with the University of Iceland, Reykjavik, Iceland. From 2015 to 2017, he was a Visiting Professor with the University of California at Los Angeles (UCLA), Los Angeles, CA. He holds the AXA Chair in remote sensing and is an Adjunct Professor with the Chinese Academy of Sciences, Aerospace Information Research Institute, Beijing, China. His research interests include image analysis, hyperspectral remote sensing, data fusion, machine learning, and artificial intelligence.

Dr. Chanussot was a member of the Institut Universitaire de France from 2012 to 2017 and a Highly Cited Researcher (Clarivate Analytics/Thomson Reuters). He was a member of the Machine Learning for Signal Processing Technical Committee of the IEEE Signal Processing Society from 2006 to 2008 and the Program Chair of the IEEE International Workshop on Machine Learning for Signal Processing in 2009. He is also the Founding President of the IEEE Geoscience and Remote Sensing French Chapter, which received the 2010 IEEE GRS-S Chapter Excellence Award. He received multiple outstanding paper awards. He was the Co-Chair and the Chair of the GRS Data Fusion Technical Committee from 2005 to 2008 and 2009 to 2011, respectively. He is also the General Chair of the first IEEE GRSS Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing (WHISPERS). He was the Vice-President of the IEEE Geoscience and Remote Sensing Society (GRSS), in charge of meetings and symposia from 2017 to 2019. He is also an Associate Editor of the IEEE Transactions on Geoscience and Remote Sensing, the IEEE Transactions on Image Processing, and the Proceedings of the IEEE.