James E. Fowler — Publications

J. E. Fowler, “Compressive-Projection Principal Component Analysis for the Compression of Hyperspectral Signatures,” in Proceedings of the Data Compression Conference, J. A. Storer and M. W. Marcellin, Eds., Snowbird, UT, March 2008, pp. 83-92.
  • Abstract:
    A method is proposed for the compression of hyperspectral signature vectors on severely resource-constrained encoding platforms. The proposed technique, compressive-projection principal component analysis, recovers from random projections not only transform coefficients but also an approximation to the principal-component basis, effectively shifting the computational burden of principal component analysis from the encoder to the decoder. In its use of random projections, the proposed method resembles compressed sensing but differs in that simple linear reconstruction suffices for coefficient recovery. Existing results from perturbation theory are invoked to argue for the robustness under quantization of the eigenvector-recovery process central to the proposed technique, and experimental results demonstrate a significant rate-distortion performance advantage over compressed sensing using a variety of popular bases.
  • Text:
    Adobe PDF Format
  • Source Code: See the CPPCA website.

© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.