1.1 \((a) \) \[x(t) = \rho_2(t) + \rho_4(t) \]

\((b) \) \[x(t) = \frac{4}{3} \left(1 - \frac{1}{4}t \right) \rho_8(t) - \frac{1}{3} \left(1 - \frac{1}{4}t \right) \rho_0(t) \]

\((c) \) \[x(t) = 2 \rho_{12}(t) + 2 \rho_6(t) + 2 \left(1 - \frac{1}{3}t \right) \rho_6(t) \]

\((d) \) \[x(t) = 4 \rho_4(t) - 2 \left(1 - \frac{1}{2}t \right) \rho_4(t) \]

1.4 \((c) \)

1.17 \((a) \) Causal and memoryless since the output \(y(t) \) at time \(t \) depends only on the input \(x\theta(t) \) at time \(t \).

\((c) \) Same answer as part \((a) \)\)

\((e) \) Causal and has memory since the output \(y(t) \) at time \(t \) depends on the input \(x(\lambda) \) for \(\lambda = 0 \) to \(\lambda = t \).
1.19 (a) Let \(y(t) \) be the response to \(x(t) \).
So that \(y(t) = |x(t)| \). Then the response to \(-x(t) \) is \(y(t) = | -x(t) | = |x(t)| \), which is not equal to \(-y(t) \), and thus the system is not homogeneous, which shows that the system is not linear.

(c) Let \(y_1(t) \) be the response to \(x_1(t) \) and \(y_2(t) \) be the response to \(x_2(t) \). Then
\[
y_1(t) = (\sin t) x_1(t) \quad \text{and} \quad y_2(t) = (\sin t) x_2(t)
\]

Let \(\tilde{y}(t) \) denote the response to \(a x_1(t) + b x_2(t) \), where \(a \) and \(b \) are scalars. Then
\[
\tilde{y}(t) = (\sin t) [a x_1(t) + b x_2(t)]
= a (\sin t) x_1(t) + b (\sin t) x_2(t)
\]

Hence \(\tilde{y}(t) = a y_1(t) + b y_2(t) \), which shows that the system is linear.

(e) Let \(y_1(t) \) be the response to \(x_1(t) \) and \(y_2(t) \) be the response to \(x_2(t) \). Then
\[
y_1(t) = \int_0^t (t - \lambda) x_1(\lambda) \, d\lambda \quad \text{and} \quad y_2(t) = \int_0^t (t - \lambda) x_2(\lambda) \, d\lambda
\]
(continued on next page)
Let \(y(t) \) denote the response to \(ax(t) + bx_0(t) \) where \(a \) and \(b \) are scalars. Then

\[
y(t) = \int_0^t [(t-\lambda)(ax_0(\lambda) + bx_0(\lambda))] d\lambda
\]

By linearity of the integration operation,

\[
y(t) = \int_0^t [(t-\lambda)x_0(\lambda) d\lambda + b \int_0^t (t-\lambda)x_0(\lambda) d\lambda]
\]

Hence \(y(t) = ay(t) + by_0(t) \), which shows that the system is linear.

1.20 (a) Let \(y(t) \) be the response to \(x(t) \), so that \(y(t) = |x(t)| \). For any \(t_1 \), the response to \(x(t-t_1) \) is equal to \(|x(t-t_1)|\), which is equal to \(y(t-t_1) \), so the system is time invariant.

(c) For any \(t_1 \), the response to \(x(t-t_1) \) is equal to \((\sin t)(t-t_1)\), which is not equal to \(y(t-t_1) \), since \(y(t-t_1) \) is equal to \([\sin(t-t_1)]t-t_1\). Therefore, the system is time varying.
1.20 (e) Let \(\tilde{y}(t) \) denote the response to
\(x_1(t-t_1) \). Then
\[
\tilde{y}(t) = \int_{0}^{t} (t-\lambda) x(t-t_1) d\lambda
\]

However,
\[
\gamma(t-t_1) = \int_{0}^{t-t_1} (t-t_1-\lambda) x(\lambda) d\lambda
\]

Let \(\Delta = t_1 + \lambda \), so \(\Delta = t_1 \) when \(\lambda = 0 \),
and \(\Delta = t \) when \(\lambda = t-t_1 \).

Also \(\lambda = \Delta - t_1 \), and inserting this into
the integral expression for \(\gamma(t-t_1) \)
gives
\[
\gamma(t-t_1) = \int_{t-t_1}^{t} (t-\lambda) x(\lambda-t_1) d\lambda
\]

\[
= \int_{t-t_1}^{t} (t-\lambda) x(\lambda-t_1) d\lambda \neq \tilde{y}(t)
\]

Thus the system is time varying.
2.20 \(\frac{L di(t)}{dt} + R i(t) + \frac{1}{C} \int_0^t i(\lambda) d\lambda = x(t) \) (KCL)

(a) \(V_C(t) = \frac{1}{C} \int_{-\infty}^t i(\lambda) d\lambda \), so \(i(t) = C \frac{dV_C(t)}{dt} \)

\[\Rightarrow L \frac{d^2V_C(t)}{dt^2} + R \frac{dV_C(t)}{dt} + \frac{1}{C} V_C(t) = \frac{1}{C} x(t) \]

(b) \(L \frac{d^2i(t)}{dt^2} + R \frac{di(t)}{dt} + \frac{1}{C} i(t) = \frac{d^2x(t)}{dt^2} \)

by differencing KCL equation

2.21 (see separate pdf)

2.24 (a) Summing currents we have

\[\frac{1}{K} y(t) + \frac{1}{L} \int_{-\infty}^t y(\lambda) d\lambda = i(t) \]

Differentiating both sides yields

\[\frac{1}{K} \frac{dy(t)}{dt} + \frac{1}{L} y(t) = \frac{di(t)}{dt} \]

So with \(R = L = 1 \), we have

\[\frac{dy(t)}{dt} + y(t) = \frac{di(t)}{dt} \]